This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015) (Proof shortened by AV, 2-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scaffval.b | |- B = ( Base ` W ) |
|
| scaffval.f | |- F = ( Scalar ` W ) |
||
| scaffval.k | |- K = ( Base ` F ) |
||
| scaffval.a | |- .xb = ( .sf ` W ) |
||
| scaffval.s | |- .x. = ( .s ` W ) |
||
| Assertion | scaffval | |- .xb = ( x e. K , y e. B |-> ( x .x. y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | |- B = ( Base ` W ) |
|
| 2 | scaffval.f | |- F = ( Scalar ` W ) |
|
| 3 | scaffval.k | |- K = ( Base ` F ) |
|
| 4 | scaffval.a | |- .xb = ( .sf ` W ) |
|
| 5 | scaffval.s | |- .x. = ( .s ` W ) |
|
| 6 | fveq2 | |- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
|
| 7 | 6 2 | eqtr4di | |- ( w = W -> ( Scalar ` w ) = F ) |
| 8 | 7 | fveq2d | |- ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` F ) ) |
| 9 | 8 3 | eqtr4di | |- ( w = W -> ( Base ` ( Scalar ` w ) ) = K ) |
| 10 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 11 | 10 1 | eqtr4di | |- ( w = W -> ( Base ` w ) = B ) |
| 12 | fveq2 | |- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
|
| 13 | 12 5 | eqtr4di | |- ( w = W -> ( .s ` w ) = .x. ) |
| 14 | 13 | oveqd | |- ( w = W -> ( x ( .s ` w ) y ) = ( x .x. y ) ) |
| 15 | 9 11 14 | mpoeq123dv | |- ( w = W -> ( x e. ( Base ` ( Scalar ` w ) ) , y e. ( Base ` w ) |-> ( x ( .s ` w ) y ) ) = ( x e. K , y e. B |-> ( x .x. y ) ) ) |
| 16 | df-scaf | |- .sf = ( w e. _V |-> ( x e. ( Base ` ( Scalar ` w ) ) , y e. ( Base ` w ) |-> ( x ( .s ` w ) y ) ) ) |
|
| 17 | 3 | fvexi | |- K e. _V |
| 18 | 1 | fvexi | |- B e. _V |
| 19 | 5 | fvexi | |- .x. e. _V |
| 20 | 19 | rnex | |- ran .x. e. _V |
| 21 | p0ex | |- { (/) } e. _V |
|
| 22 | 20 21 | unex | |- ( ran .x. u. { (/) } ) e. _V |
| 23 | df-ov | |- ( x .x. y ) = ( .x. ` <. x , y >. ) |
|
| 24 | fvrn0 | |- ( .x. ` <. x , y >. ) e. ( ran .x. u. { (/) } ) |
|
| 25 | 23 24 | eqeltri | |- ( x .x. y ) e. ( ran .x. u. { (/) } ) |
| 26 | 25 | rgen2w | |- A. x e. K A. y e. B ( x .x. y ) e. ( ran .x. u. { (/) } ) |
| 27 | 17 18 22 26 | mpoexw | |- ( x e. K , y e. B |-> ( x .x. y ) ) e. _V |
| 28 | 15 16 27 | fvmpt | |- ( W e. _V -> ( .sf ` W ) = ( x e. K , y e. B |-> ( x .x. y ) ) ) |
| 29 | fvprc | |- ( -. W e. _V -> ( .sf ` W ) = (/) ) |
|
| 30 | fvprc | |- ( -. W e. _V -> ( Base ` W ) = (/) ) |
|
| 31 | 1 30 | eqtrid | |- ( -. W e. _V -> B = (/) ) |
| 32 | 31 | olcd | |- ( -. W e. _V -> ( K = (/) \/ B = (/) ) ) |
| 33 | 0mpo0 | |- ( ( K = (/) \/ B = (/) ) -> ( x e. K , y e. B |-> ( x .x. y ) ) = (/) ) |
|
| 34 | 32 33 | syl | |- ( -. W e. _V -> ( x e. K , y e. B |-> ( x .x. y ) ) = (/) ) |
| 35 | 29 34 | eqtr4d | |- ( -. W e. _V -> ( .sf ` W ) = ( x e. K , y e. B |-> ( x .x. y ) ) ) |
| 36 | 28 35 | pm2.61i | |- ( .sf ` W ) = ( x e. K , y e. B |-> ( x .x. y ) ) |
| 37 | 4 36 | eqtri | |- .xb = ( x e. K , y e. B |-> ( x .x. y ) ) |