This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpsnbasval | |- ( ( R e. V /\ X e. W ) -> X_ x e. { X } ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = { f | ( f Fn { X } /\ ( f ` X ) e. ( Base ` R ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpsnval | |- ( X e. W -> X_ x e. { X } ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = { f | ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) ) } ) |
|
| 2 | 1 | adantl | |- ( ( R e. V /\ X e. W ) -> X_ x e. { X } ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = { f | ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) ) } ) |
| 3 | csbfv2g | |- ( X e. W -> [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = ( Base ` [_ X / x ]_ ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) ) |
|
| 4 | csbfv2g | |- ( X e. W -> [_ X / x ]_ ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) = ( ( { X } X. { ( ringLMod ` R ) } ) ` [_ X / x ]_ x ) ) |
|
| 5 | csbvarg | |- ( X e. W -> [_ X / x ]_ x = X ) |
|
| 6 | 5 | fveq2d | |- ( X e. W -> ( ( { X } X. { ( ringLMod ` R ) } ) ` [_ X / x ]_ x ) = ( ( { X } X. { ( ringLMod ` R ) } ) ` X ) ) |
| 7 | 4 6 | eqtrd | |- ( X e. W -> [_ X / x ]_ ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) = ( ( { X } X. { ( ringLMod ` R ) } ) ` X ) ) |
| 8 | 7 | fveq2d | |- ( X e. W -> ( Base ` [_ X / x ]_ ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` X ) ) ) |
| 9 | 3 8 | eqtrd | |- ( X e. W -> [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` X ) ) ) |
| 10 | 9 | adantl | |- ( ( R e. V /\ X e. W ) -> [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` X ) ) ) |
| 11 | fvexd | |- ( R e. V -> ( ringLMod ` R ) e. _V ) |
|
| 12 | 11 | anim1ci | |- ( ( R e. V /\ X e. W ) -> ( X e. W /\ ( ringLMod ` R ) e. _V ) ) |
| 13 | xpsng | |- ( ( X e. W /\ ( ringLMod ` R ) e. _V ) -> ( { X } X. { ( ringLMod ` R ) } ) = { <. X , ( ringLMod ` R ) >. } ) |
|
| 14 | 12 13 | syl | |- ( ( R e. V /\ X e. W ) -> ( { X } X. { ( ringLMod ` R ) } ) = { <. X , ( ringLMod ` R ) >. } ) |
| 15 | 14 | fveq1d | |- ( ( R e. V /\ X e. W ) -> ( ( { X } X. { ( ringLMod ` R ) } ) ` X ) = ( { <. X , ( ringLMod ` R ) >. } ` X ) ) |
| 16 | fvsng | |- ( ( X e. W /\ ( ringLMod ` R ) e. _V ) -> ( { <. X , ( ringLMod ` R ) >. } ` X ) = ( ringLMod ` R ) ) |
|
| 17 | 12 16 | syl | |- ( ( R e. V /\ X e. W ) -> ( { <. X , ( ringLMod ` R ) >. } ` X ) = ( ringLMod ` R ) ) |
| 18 | 15 17 | eqtrd | |- ( ( R e. V /\ X e. W ) -> ( ( { X } X. { ( ringLMod ` R ) } ) ` X ) = ( ringLMod ` R ) ) |
| 19 | 18 | fveq2d | |- ( ( R e. V /\ X e. W ) -> ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` X ) ) = ( Base ` ( ringLMod ` R ) ) ) |
| 20 | 10 19 | eqtrd | |- ( ( R e. V /\ X e. W ) -> [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = ( Base ` ( ringLMod ` R ) ) ) |
| 21 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 22 | 20 21 | eqtr4di | |- ( ( R e. V /\ X e. W ) -> [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = ( Base ` R ) ) |
| 23 | 22 | eleq2d | |- ( ( R e. V /\ X e. W ) -> ( ( f ` X ) e. [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) <-> ( f ` X ) e. ( Base ` R ) ) ) |
| 24 | 23 | anbi2d | |- ( ( R e. V /\ X e. W ) -> ( ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) ) <-> ( f Fn { X } /\ ( f ` X ) e. ( Base ` R ) ) ) ) |
| 25 | 24 | abbidv | |- ( ( R e. V /\ X e. W ) -> { f | ( f Fn { X } /\ ( f ` X ) e. [_ X / x ]_ ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) ) } = { f | ( f Fn { X } /\ ( f ` X ) e. ( Base ` R ) ) } ) |
| 26 | 2 25 | eqtrd | |- ( ( R e. V /\ X e. W ) -> X_ x e. { X } ( Base ` ( ( { X } X. { ( ringLMod ` R ) } ) ` x ) ) = { f | ( f Fn { X } /\ ( f ` X ) e. ( Base ` R ) ) } ) |