This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of Gleason p. 168. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimadd.3 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| rlimadd.4 | |- ( ( ph /\ x e. A ) -> C e. V ) |
||
| rlimadd.5 | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
||
| rlimadd.6 | |- ( ph -> ( x e. A |-> C ) ~~>r E ) |
||
| rlimdiv.7 | |- ( ph -> E =/= 0 ) |
||
| rlimdiv.8 | |- ( ( ph /\ x e. A ) -> C =/= 0 ) |
||
| Assertion | rlimdiv | |- ( ph -> ( x e. A |-> ( B / C ) ) ~~>r ( D / E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimadd.3 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | rlimadd.4 | |- ( ( ph /\ x e. A ) -> C e. V ) |
|
| 3 | rlimadd.5 | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
|
| 4 | rlimadd.6 | |- ( ph -> ( x e. A |-> C ) ~~>r E ) |
|
| 5 | rlimdiv.7 | |- ( ph -> E =/= 0 ) |
|
| 6 | rlimdiv.8 | |- ( ( ph /\ x e. A ) -> C =/= 0 ) |
|
| 7 | 1 3 | rlimmptrcl | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 8 | 2 4 | rlimmptrcl | |- ( ( ph /\ x e. A ) -> C e. CC ) |
| 9 | 8 6 | reccld | |- ( ( ph /\ x e. A ) -> ( 1 / C ) e. CC ) |
| 10 | eldifsn | |- ( C e. ( CC \ { 0 } ) <-> ( C e. CC /\ C =/= 0 ) ) |
|
| 11 | 8 6 10 | sylanbrc | |- ( ( ph /\ x e. A ) -> C e. ( CC \ { 0 } ) ) |
| 12 | 11 | fmpttd | |- ( ph -> ( x e. A |-> C ) : A --> ( CC \ { 0 } ) ) |
| 13 | rlimcl | |- ( ( x e. A |-> C ) ~~>r E -> E e. CC ) |
|
| 14 | 4 13 | syl | |- ( ph -> E e. CC ) |
| 15 | eldifsn | |- ( E e. ( CC \ { 0 } ) <-> ( E e. CC /\ E =/= 0 ) ) |
|
| 16 | 14 5 15 | sylanbrc | |- ( ph -> E e. ( CC \ { 0 } ) ) |
| 17 | eldifsn | |- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
|
| 18 | reccl | |- ( ( y e. CC /\ y =/= 0 ) -> ( 1 / y ) e. CC ) |
|
| 19 | 17 18 | sylbi | |- ( y e. ( CC \ { 0 } ) -> ( 1 / y ) e. CC ) |
| 20 | 19 | adantl | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( 1 / y ) e. CC ) |
| 21 | 20 | fmpttd | |- ( ph -> ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) : ( CC \ { 0 } ) --> CC ) |
| 22 | eqid | |- ( if ( 1 <_ ( ( abs ` E ) x. z ) , 1 , ( ( abs ` E ) x. z ) ) x. ( ( abs ` E ) / 2 ) ) = ( if ( 1 <_ ( ( abs ` E ) x. z ) , 1 , ( ( abs ` E ) x. z ) ) x. ( ( abs ` E ) / 2 ) ) |
|
| 23 | 22 | reccn2 | |- ( ( E e. ( CC \ { 0 } ) /\ z e. RR+ ) -> E. w e. RR+ A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( 1 / v ) - ( 1 / E ) ) ) < z ) ) |
| 24 | 16 23 | sylan | |- ( ( ph /\ z e. RR+ ) -> E. w e. RR+ A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( 1 / v ) - ( 1 / E ) ) ) < z ) ) |
| 25 | oveq2 | |- ( y = v -> ( 1 / y ) = ( 1 / v ) ) |
|
| 26 | eqid | |- ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) = ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) |
|
| 27 | ovex | |- ( 1 / v ) e. _V |
|
| 28 | 25 26 27 | fvmpt | |- ( v e. ( CC \ { 0 } ) -> ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) = ( 1 / v ) ) |
| 29 | oveq2 | |- ( y = E -> ( 1 / y ) = ( 1 / E ) ) |
|
| 30 | ovex | |- ( 1 / E ) e. _V |
|
| 31 | 29 26 30 | fvmpt | |- ( E e. ( CC \ { 0 } ) -> ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) = ( 1 / E ) ) |
| 32 | 16 31 | syl | |- ( ph -> ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) = ( 1 / E ) ) |
| 33 | 28 32 | oveqan12rd | |- ( ( ph /\ v e. ( CC \ { 0 } ) ) -> ( ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) - ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) = ( ( 1 / v ) - ( 1 / E ) ) ) |
| 34 | 33 | fveq2d | |- ( ( ph /\ v e. ( CC \ { 0 } ) ) -> ( abs ` ( ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) - ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) ) = ( abs ` ( ( 1 / v ) - ( 1 / E ) ) ) ) |
| 35 | 34 | breq1d | |- ( ( ph /\ v e. ( CC \ { 0 } ) ) -> ( ( abs ` ( ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) - ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) ) < z <-> ( abs ` ( ( 1 / v ) - ( 1 / E ) ) ) < z ) ) |
| 36 | 35 | imbi2d | |- ( ( ph /\ v e. ( CC \ { 0 } ) ) -> ( ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) - ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) ) < z ) <-> ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( 1 / v ) - ( 1 / E ) ) ) < z ) ) ) |
| 37 | 36 | ralbidva | |- ( ph -> ( A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) - ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) ) < z ) <-> A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( 1 / v ) - ( 1 / E ) ) ) < z ) ) ) |
| 38 | 37 | rexbidv | |- ( ph -> ( E. w e. RR+ A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) - ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) ) < z ) <-> E. w e. RR+ A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( 1 / v ) - ( 1 / E ) ) ) < z ) ) ) |
| 39 | 38 | biimpar | |- ( ( ph /\ E. w e. RR+ A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( 1 / v ) - ( 1 / E ) ) ) < z ) ) -> E. w e. RR+ A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) - ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) ) < z ) ) |
| 40 | 24 39 | syldan | |- ( ( ph /\ z e. RR+ ) -> E. w e. RR+ A. v e. ( CC \ { 0 } ) ( ( abs ` ( v - E ) ) < w -> ( abs ` ( ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` v ) - ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) ) < z ) ) |
| 41 | 12 16 4 21 40 | rlimcn1 | |- ( ph -> ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) o. ( x e. A |-> C ) ) ~~>r ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ` E ) ) |
| 42 | eqidd | |- ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) |
|
| 43 | eqidd | |- ( ph -> ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) = ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ) |
|
| 44 | oveq2 | |- ( y = C -> ( 1 / y ) = ( 1 / C ) ) |
|
| 45 | 11 42 43 44 | fmptco | |- ( ph -> ( ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) o. ( x e. A |-> C ) ) = ( x e. A |-> ( 1 / C ) ) ) |
| 46 | 41 45 32 | 3brtr3d | |- ( ph -> ( x e. A |-> ( 1 / C ) ) ~~>r ( 1 / E ) ) |
| 47 | 7 9 3 46 | rlimmul | |- ( ph -> ( x e. A |-> ( B x. ( 1 / C ) ) ) ~~>r ( D x. ( 1 / E ) ) ) |
| 48 | 7 8 6 | divrecd | |- ( ( ph /\ x e. A ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
| 49 | 48 | mpteq2dva | |- ( ph -> ( x e. A |-> ( B / C ) ) = ( x e. A |-> ( B x. ( 1 / C ) ) ) ) |
| 50 | rlimcl | |- ( ( x e. A |-> B ) ~~>r D -> D e. CC ) |
|
| 51 | 3 50 | syl | |- ( ph -> D e. CC ) |
| 52 | 51 14 5 | divrecd | |- ( ph -> ( D / E ) = ( D x. ( 1 / E ) ) ) |
| 53 | 47 49 52 | 3brtr4d | |- ( ph -> ( x e. A |-> ( B / C ) ) ~~>r ( D / E ) ) |