This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the negative of a sequence. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimneg.1 | |- ( ( ph /\ k e. A ) -> B e. V ) |
|
| rlimneg.2 | |- ( ph -> ( k e. A |-> B ) ~~>r C ) |
||
| Assertion | rlimneg | |- ( ph -> ( k e. A |-> -u B ) ~~>r -u C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimneg.1 | |- ( ( ph /\ k e. A ) -> B e. V ) |
|
| 2 | rlimneg.2 | |- ( ph -> ( k e. A |-> B ) ~~>r C ) |
|
| 3 | 0cnd | |- ( ( ph /\ k e. A ) -> 0 e. CC ) |
|
| 4 | 1 2 | rlimmptrcl | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| 5 | 1 | ralrimiva | |- ( ph -> A. k e. A B e. V ) |
| 6 | dmmptg | |- ( A. k e. A B e. V -> dom ( k e. A |-> B ) = A ) |
|
| 7 | 5 6 | syl | |- ( ph -> dom ( k e. A |-> B ) = A ) |
| 8 | rlimss | |- ( ( k e. A |-> B ) ~~>r C -> dom ( k e. A |-> B ) C_ RR ) |
|
| 9 | 2 8 | syl | |- ( ph -> dom ( k e. A |-> B ) C_ RR ) |
| 10 | 7 9 | eqsstrrd | |- ( ph -> A C_ RR ) |
| 11 | 0cn | |- 0 e. CC |
|
| 12 | rlimconst | |- ( ( A C_ RR /\ 0 e. CC ) -> ( k e. A |-> 0 ) ~~>r 0 ) |
|
| 13 | 10 11 12 | sylancl | |- ( ph -> ( k e. A |-> 0 ) ~~>r 0 ) |
| 14 | 3 4 13 2 | rlimsub | |- ( ph -> ( k e. A |-> ( 0 - B ) ) ~~>r ( 0 - C ) ) |
| 15 | df-neg | |- -u B = ( 0 - B ) |
|
| 16 | 15 | mpteq2i | |- ( k e. A |-> -u B ) = ( k e. A |-> ( 0 - B ) ) |
| 17 | df-neg | |- -u C = ( 0 - C ) |
|
| 18 | 14 16 17 | 3brtr4g | |- ( ph -> ( k e. A |-> -u B ) ~~>r -u C ) |