This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of Gleason p. 168. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| rlimadd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| rlimadd.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | ||
| rlimadd.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) | ||
| rlimdiv.7 | ⊢ ( 𝜑 → 𝐸 ≠ 0 ) | ||
| rlimdiv.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≠ 0 ) | ||
| Assertion | rlimdiv | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ⇝𝑟 ( 𝐷 / 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimadd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | rlimadd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 3 | rlimadd.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) | |
| 4 | rlimadd.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) | |
| 5 | rlimdiv.7 | ⊢ ( 𝜑 → 𝐸 ≠ 0 ) | |
| 6 | rlimdiv.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≠ 0 ) | |
| 7 | 1 3 | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 8 | 2 4 | rlimmptrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 9 | 8 6 | reccld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 / 𝐶 ) ∈ ℂ ) |
| 10 | eldifsn | ⊢ ( 𝐶 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) | |
| 11 | 8 6 10 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( ℂ ∖ { 0 } ) ) |
| 12 | 11 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ( ℂ ∖ { 0 } ) ) |
| 13 | rlimcl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 → 𝐸 ∈ ℂ ) | |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 15 | eldifsn | ⊢ ( 𝐸 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐸 ∈ ℂ ∧ 𝐸 ≠ 0 ) ) | |
| 16 | 14 5 15 | sylanbrc | ⊢ ( 𝜑 → 𝐸 ∈ ( ℂ ∖ { 0 } ) ) |
| 17 | eldifsn | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) | |
| 18 | reccl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / 𝑦 ) ∈ ℂ ) | |
| 19 | 17 18 | sylbi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑦 ) ∈ ℂ ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 1 / 𝑦 ) ∈ ℂ ) |
| 21 | 20 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 22 | eqid | ⊢ ( if ( 1 ≤ ( ( abs ‘ 𝐸 ) · 𝑧 ) , 1 , ( ( abs ‘ 𝐸 ) · 𝑧 ) ) · ( ( abs ‘ 𝐸 ) / 2 ) ) = ( if ( 1 ≤ ( ( abs ‘ 𝐸 ) · 𝑧 ) , 1 , ( ( abs ‘ 𝐸 ) · 𝑧 ) ) · ( ( abs ‘ 𝐸 ) / 2 ) ) | |
| 23 | 22 | reccn2 | ⊢ ( ( 𝐸 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) |
| 24 | 16 23 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) |
| 25 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 1 / 𝑦 ) = ( 1 / 𝑣 ) ) | |
| 26 | eqid | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) | |
| 27 | ovex | ⊢ ( 1 / 𝑣 ) ∈ V | |
| 28 | 25 26 27 | fvmpt | ⊢ ( 𝑣 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) = ( 1 / 𝑣 ) ) |
| 29 | oveq2 | ⊢ ( 𝑦 = 𝐸 → ( 1 / 𝑦 ) = ( 1 / 𝐸 ) ) | |
| 30 | ovex | ⊢ ( 1 / 𝐸 ) ∈ V | |
| 31 | 29 26 30 | fvmpt | ⊢ ( 𝐸 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) = ( 1 / 𝐸 ) ) |
| 32 | 16 31 | syl | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) = ( 1 / 𝐸 ) ) |
| 33 | 28 32 | oveqan12rd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) = ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) = ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) ) |
| 35 | 34 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ↔ ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) |
| 36 | 35 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ↔ ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) ) |
| 37 | 36 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ↔ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) ) |
| 38 | 37 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) ) |
| 39 | 38 | biimpar | ⊢ ( ( 𝜑 ∧ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( 1 / 𝑣 ) − ( 1 / 𝐸 ) ) ) < 𝑧 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ) |
| 40 | 24 39 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑣 − 𝐸 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝑣 ) − ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) ) < 𝑧 ) ) |
| 41 | 12 16 4 21 40 | rlimcn1 | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ⇝𝑟 ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ‘ 𝐸 ) ) |
| 42 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 43 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ) | |
| 44 | oveq2 | ⊢ ( 𝑦 = 𝐶 → ( 1 / 𝑦 ) = ( 1 / 𝐶 ) ) | |
| 45 | 11 42 43 44 | fmptco | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐶 ) ) ) |
| 46 | 41 45 32 | 3brtr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐶 ) ) ⇝𝑟 ( 1 / 𝐸 ) ) |
| 47 | 7 9 3 46 | rlimmul | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) ⇝𝑟 ( 𝐷 · ( 1 / 𝐸 ) ) ) |
| 48 | 7 8 6 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 49 | 48 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
| 50 | rlimcl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ ) | |
| 51 | 3 50 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 52 | 51 14 5 | divrecd | ⊢ ( 𝜑 → ( 𝐷 / 𝐸 ) = ( 𝐷 · ( 1 / 𝐸 ) ) ) |
| 53 | 47 49 52 | 3brtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) ⇝𝑟 ( 𝐷 / 𝐸 ) ) |