This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimabs.1 | |- ( ( ph /\ k e. A ) -> B e. V ) |
|
| rlimabs.2 | |- ( ph -> ( k e. A |-> B ) ~~>r C ) |
||
| Assertion | rlimmptrcl | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimabs.1 | |- ( ( ph /\ k e. A ) -> B e. V ) |
|
| 2 | rlimabs.2 | |- ( ph -> ( k e. A |-> B ) ~~>r C ) |
|
| 3 | rlimf | |- ( ( k e. A |-> B ) ~~>r C -> ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC ) |
|
| 4 | 2 3 | syl | |- ( ph -> ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC ) |
| 5 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 6 | 5 1 | dmmptd | |- ( ph -> dom ( k e. A |-> B ) = A ) |
| 7 | 6 | feq2d | |- ( ph -> ( ( k e. A |-> B ) : dom ( k e. A |-> B ) --> CC <-> ( k e. A |-> B ) : A --> CC ) ) |
| 8 | 4 7 | mpbid | |- ( ph -> ( k e. A |-> B ) : A --> CC ) |
| 9 | 8 | fvmptelcdm | |- ( ( ph /\ k e. A ) -> B e. CC ) |