This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the unique poset element such that ps . ( riotaneg analog.) (Contributed by NM, 16-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaoc.b | |- B = ( Base ` K ) |
|
| riotaoc.o | |- ._|_ = ( oc ` K ) |
||
| riotaoc.a | |- ( x = ( ._|_ ` y ) -> ( ph <-> ps ) ) |
||
| Assertion | riotaocN | |- ( ( K e. OP /\ E! x e. B ph ) -> ( iota_ x e. B ph ) = ( ._|_ ` ( iota_ y e. B ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaoc.b | |- B = ( Base ` K ) |
|
| 2 | riotaoc.o | |- ._|_ = ( oc ` K ) |
|
| 3 | riotaoc.a | |- ( x = ( ._|_ ` y ) -> ( ph <-> ps ) ) |
|
| 4 | nfcv | |- F/_ y ._|_ |
|
| 5 | nfriota1 | |- F/_ y ( iota_ y e. B ps ) |
|
| 6 | 4 5 | nffv | |- F/_ y ( ._|_ ` ( iota_ y e. B ps ) ) |
| 7 | 1 2 | opoccl | |- ( ( K e. OP /\ y e. B ) -> ( ._|_ ` y ) e. B ) |
| 8 | 1 2 | opoccl | |- ( ( K e. OP /\ ( iota_ y e. B ps ) e. B ) -> ( ._|_ ` ( iota_ y e. B ps ) ) e. B ) |
| 9 | fveq2 | |- ( y = ( iota_ y e. B ps ) -> ( ._|_ ` y ) = ( ._|_ ` ( iota_ y e. B ps ) ) ) |
|
| 10 | 1 2 | opoccl | |- ( ( K e. OP /\ x e. B ) -> ( ._|_ ` x ) e. B ) |
| 11 | 1 2 | opcon2b | |- ( ( K e. OP /\ x e. B /\ y e. B ) -> ( x = ( ._|_ ` y ) <-> y = ( ._|_ ` x ) ) ) |
| 12 | 10 11 | reuhypd | |- ( ( K e. OP /\ x e. B ) -> E! y e. B x = ( ._|_ ` y ) ) |
| 13 | 6 7 8 3 9 12 | riotaxfrd | |- ( ( K e. OP /\ E! x e. B ph ) -> ( iota_ x e. B ph ) = ( ._|_ ` ( iota_ y e. B ps ) ) ) |