This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the unique poset element such that ps . ( riotaneg analog.) (Contributed by NM, 16-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaoc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| riotaoc.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| riotaoc.a | ⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | riotaocN | ⊢ ( ( 𝐾 ∈ OP ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐵 𝜑 ) = ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaoc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | riotaoc.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 3 | riotaoc.a | ⊢ ( 𝑥 = ( ⊥ ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 ⊥ | |
| 5 | nfriota1 | ⊢ Ⅎ 𝑦 ( ℩ 𝑦 ∈ 𝐵 𝜓 ) | |
| 6 | 4 5 | nffv | ⊢ Ⅎ 𝑦 ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) |
| 7 | 1 2 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑦 ∈ 𝐵 ) → ( ⊥ ‘ 𝑦 ) ∈ 𝐵 ) |
| 8 | 1 2 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ∈ 𝐵 ) → ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ∈ 𝐵 ) |
| 9 | fveq2 | ⊢ ( 𝑦 = ( ℩ 𝑦 ∈ 𝐵 𝜓 ) → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ) | |
| 10 | 1 2 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 | 1 2 | opcon2b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = ( ⊥ ‘ 𝑦 ) ↔ 𝑦 = ( ⊥ ‘ 𝑥 ) ) ) |
| 12 | 10 11 | reuhypd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 𝑥 = ( ⊥ ‘ 𝑦 ) ) |
| 13 | 6 7 8 3 9 12 | riotaxfrd | ⊢ ( ( 𝐾 ∈ OP ∧ ∃! 𝑥 ∈ 𝐵 𝜑 ) → ( ℩ 𝑥 ∈ 𝐵 𝜑 ) = ( ⊥ ‘ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) ) ) |