This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmtfval.b | |- B = ( Base ` K ) |
|
| cmtfval.j | |- .\/ = ( join ` K ) |
||
| cmtfval.m | |- ./\ = ( meet ` K ) |
||
| cmtfval.o | |- ._|_ = ( oc ` K ) |
||
| cmtfval.c | |- C = ( cm ` K ) |
||
| Assertion | cmtfvalN | |- ( K e. A -> C = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmtfval.b | |- B = ( Base ` K ) |
|
| 2 | cmtfval.j | |- .\/ = ( join ` K ) |
|
| 3 | cmtfval.m | |- ./\ = ( meet ` K ) |
|
| 4 | cmtfval.o | |- ._|_ = ( oc ` K ) |
|
| 5 | cmtfval.c | |- C = ( cm ` K ) |
|
| 6 | elex | |- ( K e. A -> K e. _V ) |
|
| 7 | fveq2 | |- ( p = K -> ( Base ` p ) = ( Base ` K ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( p = K -> ( Base ` p ) = B ) |
| 9 | 8 | eleq2d | |- ( p = K -> ( x e. ( Base ` p ) <-> x e. B ) ) |
| 10 | 8 | eleq2d | |- ( p = K -> ( y e. ( Base ` p ) <-> y e. B ) ) |
| 11 | fveq2 | |- ( p = K -> ( join ` p ) = ( join ` K ) ) |
|
| 12 | 11 2 | eqtr4di | |- ( p = K -> ( join ` p ) = .\/ ) |
| 13 | fveq2 | |- ( p = K -> ( meet ` p ) = ( meet ` K ) ) |
|
| 14 | 13 3 | eqtr4di | |- ( p = K -> ( meet ` p ) = ./\ ) |
| 15 | 14 | oveqd | |- ( p = K -> ( x ( meet ` p ) y ) = ( x ./\ y ) ) |
| 16 | eqidd | |- ( p = K -> x = x ) |
|
| 17 | fveq2 | |- ( p = K -> ( oc ` p ) = ( oc ` K ) ) |
|
| 18 | 17 4 | eqtr4di | |- ( p = K -> ( oc ` p ) = ._|_ ) |
| 19 | 18 | fveq1d | |- ( p = K -> ( ( oc ` p ) ` y ) = ( ._|_ ` y ) ) |
| 20 | 14 16 19 | oveq123d | |- ( p = K -> ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) = ( x ./\ ( ._|_ ` y ) ) ) |
| 21 | 12 15 20 | oveq123d | |- ( p = K -> ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) |
| 22 | 21 | eqeq2d | |- ( p = K -> ( x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) <-> x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) ) |
| 23 | 9 10 22 | 3anbi123d | |- ( p = K -> ( ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) <-> ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) ) ) |
| 24 | 23 | opabbidv | |- ( p = K -> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |
| 25 | df-cmtN | |- cm = ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } ) |
|
| 26 | df-3an | |- ( ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) <-> ( ( x e. B /\ y e. B ) /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) ) |
|
| 27 | 26 | opabbii | |- { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } |
| 28 | 1 | fvexi | |- B e. _V |
| 29 | 28 28 | xpex | |- ( B X. B ) e. _V |
| 30 | opabssxp | |- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } C_ ( B X. B ) |
|
| 31 | 29 30 | ssexi | |- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } e. _V |
| 32 | 27 31 | eqeltri | |- { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } e. _V |
| 33 | 24 25 32 | fvmpt | |- ( K e. _V -> ( cm ` K ) = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |
| 34 | 5 33 | eqtrid | |- ( K e. _V -> C = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |
| 35 | 6 34 | syl | |- ( K e. A -> C = { <. x , y >. | ( x e. B /\ y e. B /\ x = ( ( x ./\ y ) .\/ ( x ./\ ( ._|_ ` y ) ) ) ) } ) |