This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of the unique real such that ph . (Contributed by NM, 13-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | riotaneg.1 | |- ( x = -u y -> ( ph <-> ps ) ) |
|
| Assertion | riotaneg | |- ( E! x e. RR ph -> ( iota_ x e. RR ph ) = -u ( iota_ y e. RR ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaneg.1 | |- ( x = -u y -> ( ph <-> ps ) ) |
|
| 2 | tru | |- T. |
|
| 3 | nfriota1 | |- F/_ y ( iota_ y e. RR ps ) |
|
| 4 | 3 | nfneg | |- F/_ y -u ( iota_ y e. RR ps ) |
| 5 | renegcl | |- ( y e. RR -> -u y e. RR ) |
|
| 6 | 5 | adantl | |- ( ( T. /\ y e. RR ) -> -u y e. RR ) |
| 7 | simpr | |- ( ( T. /\ ( iota_ y e. RR ps ) e. RR ) -> ( iota_ y e. RR ps ) e. RR ) |
|
| 8 | 7 | renegcld | |- ( ( T. /\ ( iota_ y e. RR ps ) e. RR ) -> -u ( iota_ y e. RR ps ) e. RR ) |
| 9 | negeq | |- ( y = ( iota_ y e. RR ps ) -> -u y = -u ( iota_ y e. RR ps ) ) |
|
| 10 | renegcl | |- ( x e. RR -> -u x e. RR ) |
|
| 11 | recn | |- ( x e. RR -> x e. CC ) |
|
| 12 | recn | |- ( y e. RR -> y e. CC ) |
|
| 13 | negcon2 | |- ( ( x e. CC /\ y e. CC ) -> ( x = -u y <-> y = -u x ) ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( x e. RR /\ y e. RR ) -> ( x = -u y <-> y = -u x ) ) |
| 15 | 10 14 | reuhyp | |- ( x e. RR -> E! y e. RR x = -u y ) |
| 16 | 15 | adantl | |- ( ( T. /\ x e. RR ) -> E! y e. RR x = -u y ) |
| 17 | 4 6 8 1 9 16 | riotaxfrd | |- ( ( T. /\ E! x e. RR ph ) -> ( iota_ x e. RR ph ) = -u ( iota_ y e. RR ps ) ) |
| 18 | 2 17 | mpan | |- ( E! x e. RR ph -> ( iota_ x e. RR ph ) = -u ( iota_ y e. RR ps ) ) |