This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd . (Contributed by NM, 16-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuhypd.1 | |- ( ( ph /\ x e. C ) -> B e. C ) |
|
| reuhypd.2 | |- ( ( ph /\ x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) |
||
| Assertion | reuhypd | |- ( ( ph /\ x e. C ) -> E! y e. C x = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuhypd.1 | |- ( ( ph /\ x e. C ) -> B e. C ) |
|
| 2 | reuhypd.2 | |- ( ( ph /\ x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) |
|
| 3 | 1 | elexd | |- ( ( ph /\ x e. C ) -> B e. _V ) |
| 4 | eueq | |- ( B e. _V <-> E! y y = B ) |
|
| 5 | 3 4 | sylib | |- ( ( ph /\ x e. C ) -> E! y y = B ) |
| 6 | eleq1 | |- ( y = B -> ( y e. C <-> B e. C ) ) |
|
| 7 | 1 6 | syl5ibrcom | |- ( ( ph /\ x e. C ) -> ( y = B -> y e. C ) ) |
| 8 | 7 | pm4.71rd | |- ( ( ph /\ x e. C ) -> ( y = B <-> ( y e. C /\ y = B ) ) ) |
| 9 | 2 | 3expa | |- ( ( ( ph /\ x e. C ) /\ y e. C ) -> ( x = A <-> y = B ) ) |
| 10 | 9 | pm5.32da | |- ( ( ph /\ x e. C ) -> ( ( y e. C /\ x = A ) <-> ( y e. C /\ y = B ) ) ) |
| 11 | 8 10 | bitr4d | |- ( ( ph /\ x e. C ) -> ( y = B <-> ( y e. C /\ x = A ) ) ) |
| 12 | 11 | eubidv | |- ( ( ph /\ x e. C ) -> ( E! y y = B <-> E! y ( y e. C /\ x = A ) ) ) |
| 13 | 5 12 | mpbid | |- ( ( ph /\ x e. C ) -> E! y ( y e. C /\ x = A ) ) |
| 14 | df-reu | |- ( E! y e. C x = A <-> E! y ( y e. C /\ x = A ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( ph /\ x e. C ) -> E! y e. C x = A ) |