This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo . (Contributed by AV, 31-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rinvmod.b | |- B = ( Base ` G ) |
|
| rinvmod.0 | |- .0. = ( 0g ` G ) |
||
| rinvmod.p | |- .+ = ( +g ` G ) |
||
| rinvmod.m | |- ( ph -> G e. CMnd ) |
||
| rinvmod.a | |- ( ph -> A e. B ) |
||
| Assertion | rinvmod | |- ( ph -> E* w e. B ( A .+ w ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rinvmod.b | |- B = ( Base ` G ) |
|
| 2 | rinvmod.0 | |- .0. = ( 0g ` G ) |
|
| 3 | rinvmod.p | |- .+ = ( +g ` G ) |
|
| 4 | rinvmod.m | |- ( ph -> G e. CMnd ) |
|
| 5 | rinvmod.a | |- ( ph -> A e. B ) |
|
| 6 | 4 | adantr | |- ( ( ph /\ w e. B ) -> G e. CMnd ) |
| 7 | simpr | |- ( ( ph /\ w e. B ) -> w e. B ) |
|
| 8 | 5 | adantr | |- ( ( ph /\ w e. B ) -> A e. B ) |
| 9 | 1 3 | cmncom | |- ( ( G e. CMnd /\ w e. B /\ A e. B ) -> ( w .+ A ) = ( A .+ w ) ) |
| 10 | 6 7 8 9 | syl3anc | |- ( ( ph /\ w e. B ) -> ( w .+ A ) = ( A .+ w ) ) |
| 11 | 10 | adantr | |- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = ( A .+ w ) ) |
| 12 | simpr | |- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( A .+ w ) = .0. ) |
|
| 13 | 11 12 | eqtrd | |- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = .0. ) |
| 14 | 13 12 | jca | |- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) |
| 15 | 14 | ex | |- ( ( ph /\ w e. B ) -> ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) ) |
| 16 | 15 | ralrimiva | |- ( ph -> A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) ) |
| 17 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 18 | 4 17 | syl | |- ( ph -> G e. Mnd ) |
| 19 | 1 2 3 18 5 | mndinvmod | |- ( ph -> E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) |
| 20 | rmoim | |- ( A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) -> ( E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) -> E* w e. B ( A .+ w ) = .0. ) ) |
|
| 21 | 16 19 20 | sylc | |- ( ph -> E* w e. B ( A .+ w ) = .0. ) |