This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndinvmod.b | |- B = ( Base ` G ) |
|
| mndinvmod.0 | |- .0. = ( 0g ` G ) |
||
| mndinvmod.p | |- .+ = ( +g ` G ) |
||
| mndinvmod.m | |- ( ph -> G e. Mnd ) |
||
| mndinvmod.a | |- ( ph -> A e. B ) |
||
| Assertion | mndinvmod | |- ( ph -> E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndinvmod.b | |- B = ( Base ` G ) |
|
| 2 | mndinvmod.0 | |- .0. = ( 0g ` G ) |
|
| 3 | mndinvmod.p | |- .+ = ( +g ` G ) |
|
| 4 | mndinvmod.m | |- ( ph -> G e. Mnd ) |
|
| 5 | mndinvmod.a | |- ( ph -> A e. B ) |
|
| 6 | simpl | |- ( ( w e. B /\ v e. B ) -> w e. B ) |
|
| 7 | 1 3 2 | mndrid | |- ( ( G e. Mnd /\ w e. B ) -> ( w .+ .0. ) = w ) |
| 8 | 4 6 7 | syl2an | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> ( w .+ .0. ) = w ) |
| 9 | 8 | eqcomd | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> w = ( w .+ .0. ) ) |
| 10 | 9 | adantr | |- ( ( ( ph /\ ( w e. B /\ v e. B ) ) /\ ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) ) -> w = ( w .+ .0. ) ) |
| 11 | oveq2 | |- ( .0. = ( A .+ v ) -> ( w .+ .0. ) = ( w .+ ( A .+ v ) ) ) |
|
| 12 | 11 | eqcoms | |- ( ( A .+ v ) = .0. -> ( w .+ .0. ) = ( w .+ ( A .+ v ) ) ) |
| 13 | 12 | adantl | |- ( ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) -> ( w .+ .0. ) = ( w .+ ( A .+ v ) ) ) |
| 14 | 13 | adantl | |- ( ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) -> ( w .+ .0. ) = ( w .+ ( A .+ v ) ) ) |
| 15 | 14 | adantl | |- ( ( ( ph /\ ( w e. B /\ v e. B ) ) /\ ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) ) -> ( w .+ .0. ) = ( w .+ ( A .+ v ) ) ) |
| 16 | 4 | adantr | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> G e. Mnd ) |
| 17 | 6 | adantl | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> w e. B ) |
| 18 | 5 | adantr | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> A e. B ) |
| 19 | simpr | |- ( ( w e. B /\ v e. B ) -> v e. B ) |
|
| 20 | 19 | adantl | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> v e. B ) |
| 21 | 1 3 | mndass | |- ( ( G e. Mnd /\ ( w e. B /\ A e. B /\ v e. B ) ) -> ( ( w .+ A ) .+ v ) = ( w .+ ( A .+ v ) ) ) |
| 22 | 21 | eqcomd | |- ( ( G e. Mnd /\ ( w e. B /\ A e. B /\ v e. B ) ) -> ( w .+ ( A .+ v ) ) = ( ( w .+ A ) .+ v ) ) |
| 23 | 16 17 18 20 22 | syl13anc | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> ( w .+ ( A .+ v ) ) = ( ( w .+ A ) .+ v ) ) |
| 24 | 23 | adantr | |- ( ( ( ph /\ ( w e. B /\ v e. B ) ) /\ ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) ) -> ( w .+ ( A .+ v ) ) = ( ( w .+ A ) .+ v ) ) |
| 25 | oveq1 | |- ( ( w .+ A ) = .0. -> ( ( w .+ A ) .+ v ) = ( .0. .+ v ) ) |
|
| 26 | 25 | adantr | |- ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) -> ( ( w .+ A ) .+ v ) = ( .0. .+ v ) ) |
| 27 | 26 | adantr | |- ( ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) -> ( ( w .+ A ) .+ v ) = ( .0. .+ v ) ) |
| 28 | 27 | adantl | |- ( ( ( ph /\ ( w e. B /\ v e. B ) ) /\ ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) ) -> ( ( w .+ A ) .+ v ) = ( .0. .+ v ) ) |
| 29 | 1 3 2 | mndlid | |- ( ( G e. Mnd /\ v e. B ) -> ( .0. .+ v ) = v ) |
| 30 | 4 19 29 | syl2an | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> ( .0. .+ v ) = v ) |
| 31 | 30 | adantr | |- ( ( ( ph /\ ( w e. B /\ v e. B ) ) /\ ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) ) -> ( .0. .+ v ) = v ) |
| 32 | 24 28 31 | 3eqtrd | |- ( ( ( ph /\ ( w e. B /\ v e. B ) ) /\ ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) ) -> ( w .+ ( A .+ v ) ) = v ) |
| 33 | 10 15 32 | 3eqtrd | |- ( ( ( ph /\ ( w e. B /\ v e. B ) ) /\ ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) ) -> w = v ) |
| 34 | 33 | ex | |- ( ( ph /\ ( w e. B /\ v e. B ) ) -> ( ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) -> w = v ) ) |
| 35 | 34 | ralrimivva | |- ( ph -> A. w e. B A. v e. B ( ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) -> w = v ) ) |
| 36 | oveq1 | |- ( w = v -> ( w .+ A ) = ( v .+ A ) ) |
|
| 37 | 36 | eqeq1d | |- ( w = v -> ( ( w .+ A ) = .0. <-> ( v .+ A ) = .0. ) ) |
| 38 | oveq2 | |- ( w = v -> ( A .+ w ) = ( A .+ v ) ) |
|
| 39 | 38 | eqeq1d | |- ( w = v -> ( ( A .+ w ) = .0. <-> ( A .+ v ) = .0. ) ) |
| 40 | 37 39 | anbi12d | |- ( w = v -> ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) <-> ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) ) |
| 41 | 40 | rmo4 | |- ( E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) <-> A. w e. B A. v e. B ( ( ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) /\ ( ( v .+ A ) = .0. /\ ( A .+ v ) = .0. ) ) -> w = v ) ) |
| 42 | 35 41 | sylibr | |- ( ph -> E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) |