This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo . (Contributed by AV, 31-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rinvmod.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| rinvmod.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| rinvmod.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| rinvmod.m | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| rinvmod.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| Assertion | rinvmod | ⊢ ( 𝜑 → ∃* 𝑤 ∈ 𝐵 ( 𝐴 + 𝑤 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rinvmod.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | rinvmod.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | rinvmod.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | rinvmod.m | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 5 | rinvmod.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 6 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → 𝐺 ∈ CMnd ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) | |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
| 9 | 1 3 | cmncom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑤 + 𝐴 ) = ( 𝐴 + 𝑤 ) ) |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 + 𝐴 ) = ( 𝐴 + 𝑤 ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐴 + 𝑤 ) = 0 ) → ( 𝑤 + 𝐴 ) = ( 𝐴 + 𝑤 ) ) |
| 12 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐴 + 𝑤 ) = 0 ) → ( 𝐴 + 𝑤 ) = 0 ) | |
| 13 | 11 12 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐴 + 𝑤 ) = 0 ) → ( 𝑤 + 𝐴 ) = 0 ) |
| 14 | 13 12 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝐴 + 𝑤 ) = 0 ) → ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ) |
| 15 | 14 | ex | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐴 + 𝑤 ) = 0 → ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ) ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( ( 𝐴 + 𝑤 ) = 0 → ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ) ) |
| 17 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 18 | 4 17 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 19 | 1 2 3 18 5 | mndinvmod | ⊢ ( 𝜑 → ∃* 𝑤 ∈ 𝐵 ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ) |
| 20 | rmoim | ⊢ ( ∀ 𝑤 ∈ 𝐵 ( ( 𝐴 + 𝑤 ) = 0 → ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ) → ( ∃* 𝑤 ∈ 𝐵 ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) → ∃* 𝑤 ∈ 𝐵 ( 𝐴 + 𝑤 ) = 0 ) ) | |
| 21 | 16 19 20 | sylc | ⊢ ( 𝜑 → ∃* 𝑤 ∈ 𝐵 ( 𝐴 + 𝑤 ) = 0 ) |