This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a (unital) ring". Definition of "ring with unit" in Schechter p. 187. (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isring.b | |- B = ( Base ` R ) |
|
| isring.g | |- G = ( mulGrp ` R ) |
||
| isring.p | |- .+ = ( +g ` R ) |
||
| isring.t | |- .x. = ( .r ` R ) |
||
| Assertion | isring | |- ( R e. Ring <-> ( R e. Grp /\ G e. Mnd /\ A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isring.b | |- B = ( Base ` R ) |
|
| 2 | isring.g | |- G = ( mulGrp ` R ) |
|
| 3 | isring.p | |- .+ = ( +g ` R ) |
|
| 4 | isring.t | |- .x. = ( .r ` R ) |
|
| 5 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( r = R -> ( mulGrp ` r ) = G ) |
| 7 | 6 | eleq1d | |- ( r = R -> ( ( mulGrp ` r ) e. Mnd <-> G e. Mnd ) ) |
| 8 | fvexd | |- ( r = R -> ( Base ` r ) e. _V ) |
|
| 9 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 10 | 9 1 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 11 | fvexd | |- ( ( r = R /\ b = B ) -> ( +g ` r ) e. _V ) |
|
| 12 | simpl | |- ( ( r = R /\ b = B ) -> r = R ) |
|
| 13 | 12 | fveq2d | |- ( ( r = R /\ b = B ) -> ( +g ` r ) = ( +g ` R ) ) |
| 14 | 13 3 | eqtr4di | |- ( ( r = R /\ b = B ) -> ( +g ` r ) = .+ ) |
| 15 | fvexd | |- ( ( ( r = R /\ b = B ) /\ p = .+ ) -> ( .r ` r ) e. _V ) |
|
| 16 | simpll | |- ( ( ( r = R /\ b = B ) /\ p = .+ ) -> r = R ) |
|
| 17 | 16 | fveq2d | |- ( ( ( r = R /\ b = B ) /\ p = .+ ) -> ( .r ` r ) = ( .r ` R ) ) |
| 18 | 17 4 | eqtr4di | |- ( ( ( r = R /\ b = B ) /\ p = .+ ) -> ( .r ` r ) = .x. ) |
| 19 | simpllr | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> b = B ) |
|
| 20 | simpr | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> t = .x. ) |
|
| 21 | eqidd | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> x = x ) |
|
| 22 | simplr | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> p = .+ ) |
|
| 23 | 22 | oveqd | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( y p z ) = ( y .+ z ) ) |
| 24 | 20 21 23 | oveq123d | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( x t ( y p z ) ) = ( x .x. ( y .+ z ) ) ) |
| 25 | 20 | oveqd | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( x t y ) = ( x .x. y ) ) |
| 26 | 20 | oveqd | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( x t z ) = ( x .x. z ) ) |
| 27 | 22 25 26 | oveq123d | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( ( x t y ) p ( x t z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 28 | 24 27 | eqeq12d | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) <-> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 29 | 22 | oveqd | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( x p y ) = ( x .+ y ) ) |
| 30 | eqidd | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> z = z ) |
|
| 31 | 20 29 30 | oveq123d | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( ( x p y ) t z ) = ( ( x .+ y ) .x. z ) ) |
| 32 | 20 | oveqd | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( y t z ) = ( y .x. z ) ) |
| 33 | 22 26 32 | oveq123d | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( ( x t z ) p ( y t z ) ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 34 | 31 33 | eqeq12d | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) <-> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 35 | 28 34 | anbi12d | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 36 | 19 35 | raleqbidv | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 37 | 19 36 | raleqbidv | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 38 | 19 37 | raleqbidv | |- ( ( ( ( r = R /\ b = B ) /\ p = .+ ) /\ t = .x. ) -> ( A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 39 | 15 18 38 | sbcied2 | |- ( ( ( r = R /\ b = B ) /\ p = .+ ) -> ( [. ( .r ` r ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 40 | 11 14 39 | sbcied2 | |- ( ( r = R /\ b = B ) -> ( [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 41 | 8 10 40 | sbcied2 | |- ( r = R -> ( [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 42 | 7 41 | anbi12d | |- ( r = R -> ( ( ( mulGrp ` r ) e. Mnd /\ [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) <-> ( G e. Mnd /\ A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) ) |
| 43 | df-ring | |- Ring = { r e. Grp | ( ( mulGrp ` r ) e. Mnd /\ [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. A. x e. b A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) ) } |
|
| 44 | 42 43 | elrab2 | |- ( R e. Ring <-> ( R e. Grp /\ ( G e. Mnd /\ A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) ) |
| 45 | 3anass | |- ( ( R e. Grp /\ G e. Mnd /\ A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) <-> ( R e. Grp /\ ( G e. Mnd /\ A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) ) |
|
| 46 | 44 45 | bitr4i | |- ( R e. Ring <-> ( R e. Grp /\ G e. Mnd /\ A. x e. B A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |