This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idrhm.b | |- B = ( Base ` R ) |
|
| Assertion | idrhm | |- ( R e. Ring -> ( _I |` B ) e. ( R RingHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idrhm.b | |- B = ( Base ` R ) |
|
| 2 | id | |- ( R e. Ring -> R e. Ring ) |
|
| 3 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 4 | 1 | idghm | |- ( R e. Grp -> ( _I |` B ) e. ( R GrpHom R ) ) |
| 5 | 3 4 | syl | |- ( R e. Ring -> ( _I |` B ) e. ( R GrpHom R ) ) |
| 6 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 7 | 6 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 8 | 6 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 9 | 8 | idmhm | |- ( ( mulGrp ` R ) e. Mnd -> ( _I |` B ) e. ( ( mulGrp ` R ) MndHom ( mulGrp ` R ) ) ) |
| 10 | 7 9 | syl | |- ( R e. Ring -> ( _I |` B ) e. ( ( mulGrp ` R ) MndHom ( mulGrp ` R ) ) ) |
| 11 | 5 10 | jca | |- ( R e. Ring -> ( ( _I |` B ) e. ( R GrpHom R ) /\ ( _I |` B ) e. ( ( mulGrp ` R ) MndHom ( mulGrp ` R ) ) ) ) |
| 12 | 6 6 | isrhm | |- ( ( _I |` B ) e. ( R RingHom R ) <-> ( ( R e. Ring /\ R e. Ring ) /\ ( ( _I |` B ) e. ( R GrpHom R ) /\ ( _I |` B ) e. ( ( mulGrp ` R ) MndHom ( mulGrp ` R ) ) ) ) ) |
| 13 | 2 2 11 12 | syl21anbrc | |- ( R e. Ring -> ( _I |` B ) e. ( R RingHom R ) ) |