This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for rhmsubc . (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| rngcrescrhm.c | |- C = ( RngCat ` U ) |
||
| rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
||
| rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
||
| Assertion | rhmsubclem2 | |- ( ( ph /\ X e. R /\ Y e. R ) -> ( X H Y ) = ( X RingHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| 2 | rngcrescrhm.c | |- C = ( RngCat ` U ) |
|
| 3 | rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
|
| 4 | rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
|
| 5 | opelxpi | |- ( ( X e. R /\ Y e. R ) -> <. X , Y >. e. ( R X. R ) ) |
|
| 6 | 5 | 3adant1 | |- ( ( ph /\ X e. R /\ Y e. R ) -> <. X , Y >. e. ( R X. R ) ) |
| 7 | 6 | fvresd | |- ( ( ph /\ X e. R /\ Y e. R ) -> ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) = ( RingHom ` <. X , Y >. ) ) |
| 8 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 9 | 4 | fveq1i | |- ( H ` <. X , Y >. ) = ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) |
| 10 | 8 9 | eqtri | |- ( X H Y ) = ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) |
| 11 | df-ov | |- ( X RingHom Y ) = ( RingHom ` <. X , Y >. ) |
|
| 12 | 7 10 11 | 3eqtr4g | |- ( ( ph /\ X e. R /\ Y e. R ) -> ( X H Y ) = ( X RingHom Y ) ) |