This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hyperbolic sine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resinhcl | |- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | sinhval | |- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
|
| 3 | 1 2 | syl | |- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
| 4 | reefcl | |- ( A e. RR -> ( exp ` A ) e. RR ) |
|
| 5 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 6 | 5 | reefcld | |- ( A e. RR -> ( exp ` -u A ) e. RR ) |
| 7 | 4 6 | resubcld | |- ( A e. RR -> ( ( exp ` A ) - ( exp ` -u A ) ) e. RR ) |
| 8 | 7 | rehalfcld | |- ( A e. RR -> ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) e. RR ) |
| 9 | 3 8 | eqeltrd | |- ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) e. RR ) |