This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCatU categories for different U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resssetc.c | |- C = ( SetCat ` U ) |
|
| resssetc.d | |- D = ( SetCat ` V ) |
||
| resssetc.1 | |- ( ph -> U e. W ) |
||
| resssetc.2 | |- ( ph -> V C_ U ) |
||
| Assertion | resssetc | |- ( ph -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` D ) /\ ( comf ` ( C |`s V ) ) = ( comf ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resssetc.c | |- C = ( SetCat ` U ) |
|
| 2 | resssetc.d | |- D = ( SetCat ` V ) |
|
| 3 | resssetc.1 | |- ( ph -> U e. W ) |
|
| 4 | resssetc.2 | |- ( ph -> V C_ U ) |
|
| 5 | 3 4 | ssexd | |- ( ph -> V e. _V ) |
| 6 | 5 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> V e. _V ) |
| 7 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 8 | simprl | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. V ) |
|
| 9 | simprr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. V ) |
|
| 10 | 2 6 7 8 9 | setchom | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x ( Hom ` D ) y ) = ( y ^m x ) ) |
| 11 | 3 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> U e. W ) |
| 12 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 13 | 4 | adantr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> V C_ U ) |
| 14 | 13 8 | sseldd | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. U ) |
| 15 | 13 9 | sseldd | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. U ) |
| 16 | 1 11 12 14 15 | setchom | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x ( Hom ` C ) y ) = ( y ^m x ) ) |
| 17 | eqid | |- ( C |`s V ) = ( C |`s V ) |
|
| 18 | 17 12 | resshom | |- ( V e. _V -> ( Hom ` C ) = ( Hom ` ( C |`s V ) ) ) |
| 19 | 5 18 | syl | |- ( ph -> ( Hom ` C ) = ( Hom ` ( C |`s V ) ) ) |
| 20 | 19 | oveqdr | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` ( C |`s V ) ) y ) ) |
| 21 | 10 16 20 | 3eqtr2rd | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x ( Hom ` ( C |`s V ) ) y ) = ( x ( Hom ` D ) y ) ) |
| 22 | 21 | ralrimivva | |- ( ph -> A. x e. V A. y e. V ( x ( Hom ` ( C |`s V ) ) y ) = ( x ( Hom ` D ) y ) ) |
| 23 | eqid | |- ( Hom ` ( C |`s V ) ) = ( Hom ` ( C |`s V ) ) |
|
| 24 | 1 3 | setcbas | |- ( ph -> U = ( Base ` C ) ) |
| 25 | 4 24 | sseqtrd | |- ( ph -> V C_ ( Base ` C ) ) |
| 26 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 27 | 17 26 | ressbas2 | |- ( V C_ ( Base ` C ) -> V = ( Base ` ( C |`s V ) ) ) |
| 28 | 25 27 | syl | |- ( ph -> V = ( Base ` ( C |`s V ) ) ) |
| 29 | 2 5 | setcbas | |- ( ph -> V = ( Base ` D ) ) |
| 30 | 23 7 28 29 | homfeq | |- ( ph -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` D ) <-> A. x e. V A. y e. V ( x ( Hom ` ( C |`s V ) ) y ) = ( x ( Hom ` D ) y ) ) ) |
| 31 | 22 30 | mpbird | |- ( ph -> ( Homf ` ( C |`s V ) ) = ( Homf ` D ) ) |
| 32 | 5 | ad2antrr | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> V e. _V ) |
| 33 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 34 | simplr1 | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> x e. V ) |
|
| 35 | simplr2 | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> y e. V ) |
|
| 36 | simplr3 | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> z e. V ) |
|
| 37 | simprl | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> f e. ( x ( Hom ` D ) y ) ) |
|
| 38 | 2 32 7 34 35 | elsetchom | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( f e. ( x ( Hom ` D ) y ) <-> f : x --> y ) ) |
| 39 | 37 38 | mpbid | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> f : x --> y ) |
| 40 | simprr | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> g e. ( y ( Hom ` D ) z ) ) |
|
| 41 | 2 32 7 35 36 | elsetchom | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g e. ( y ( Hom ` D ) z ) <-> g : y --> z ) ) |
| 42 | 40 41 | mpbid | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> g : y --> z ) |
| 43 | 2 32 33 34 35 36 39 42 | setcco | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g o. f ) ) |
| 44 | 3 | ad2antrr | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> U e. W ) |
| 45 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 46 | 4 | ad2antrr | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> V C_ U ) |
| 47 | 46 34 | sseldd | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> x e. U ) |
| 48 | 46 35 | sseldd | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> y e. U ) |
| 49 | 46 36 | sseldd | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> z e. U ) |
| 50 | 1 44 45 47 48 49 39 42 | setcco | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g o. f ) ) |
| 51 | 17 45 | ressco | |- ( V e. _V -> ( comp ` C ) = ( comp ` ( C |`s V ) ) ) |
| 52 | 5 51 | syl | |- ( ph -> ( comp ` C ) = ( comp ` ( C |`s V ) ) ) |
| 53 | 52 | ad2antrr | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( comp ` C ) = ( comp ` ( C |`s V ) ) ) |
| 54 | 53 | oveqd | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( <. x , y >. ( comp ` C ) z ) = ( <. x , y >. ( comp ` ( C |`s V ) ) z ) ) |
| 55 | 54 | oveqd | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) |
| 56 | 43 50 55 | 3eqtr2d | |- ( ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) |
| 57 | 56 | ralrimivva | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) |
| 58 | 57 | ralrimivvva | |- ( ph -> A. x e. V A. y e. V A. z e. V A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) |
| 59 | eqid | |- ( comp ` ( C |`s V ) ) = ( comp ` ( C |`s V ) ) |
|
| 60 | 31 | eqcomd | |- ( ph -> ( Homf ` D ) = ( Homf ` ( C |`s V ) ) ) |
| 61 | 33 59 7 29 28 60 | comfeq | |- ( ph -> ( ( comf ` D ) = ( comf ` ( C |`s V ) ) <-> A. x e. V A. y e. V A. z e. V A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) ) |
| 62 | 58 61 | mpbird | |- ( ph -> ( comf ` D ) = ( comf ` ( C |`s V ) ) ) |
| 63 | 62 | eqcomd | |- ( ph -> ( comf ` ( C |`s V ) ) = ( comf ` D ) ) |
| 64 | 31 63 | jca | |- ( ph -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` D ) /\ ( comf ` ( C |`s V ) ) = ( comf ` D ) ) ) |