This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcbas.c | |- C = ( SetCat ` U ) |
|
| setcbas.u | |- ( ph -> U e. V ) |
||
| setcco.o | |- .x. = ( comp ` C ) |
||
| setcco.x | |- ( ph -> X e. U ) |
||
| setcco.y | |- ( ph -> Y e. U ) |
||
| setcco.z | |- ( ph -> Z e. U ) |
||
| setcco.f | |- ( ph -> F : X --> Y ) |
||
| setcco.g | |- ( ph -> G : Y --> Z ) |
||
| Assertion | setcco | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | |- C = ( SetCat ` U ) |
|
| 2 | setcbas.u | |- ( ph -> U e. V ) |
|
| 3 | setcco.o | |- .x. = ( comp ` C ) |
|
| 4 | setcco.x | |- ( ph -> X e. U ) |
|
| 5 | setcco.y | |- ( ph -> Y e. U ) |
|
| 6 | setcco.z | |- ( ph -> Z e. U ) |
|
| 7 | setcco.f | |- ( ph -> F : X --> Y ) |
|
| 8 | setcco.g | |- ( ph -> G : Y --> Z ) |
|
| 9 | 1 2 3 | setccofval | |- ( ph -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) ) ) |
| 10 | simprr | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> z = Z ) |
|
| 11 | simprl | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> v = <. X , Y >. ) |
|
| 12 | 11 | fveq2d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = ( 2nd ` <. X , Y >. ) ) |
| 13 | op2ndg | |- ( ( X e. U /\ Y e. U ) -> ( 2nd ` <. X , Y >. ) = Y ) |
|
| 14 | 4 5 13 | syl2anc | |- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 15 | 14 | adantr | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 16 | 12 15 | eqtrd | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = Y ) |
| 17 | 10 16 | oveq12d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( z ^m ( 2nd ` v ) ) = ( Z ^m Y ) ) |
| 18 | 11 | fveq2d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 1st ` v ) = ( 1st ` <. X , Y >. ) ) |
| 19 | op1stg | |- ( ( X e. U /\ Y e. U ) -> ( 1st ` <. X , Y >. ) = X ) |
|
| 20 | 4 5 19 | syl2anc | |- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
| 21 | 20 | adantr | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 1st ` <. X , Y >. ) = X ) |
| 22 | 18 21 | eqtrd | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 1st ` v ) = X ) |
| 23 | 16 22 | oveq12d | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( ( 2nd ` v ) ^m ( 1st ` v ) ) = ( Y ^m X ) ) |
| 24 | eqidd | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g o. f ) = ( g o. f ) ) |
|
| 25 | 17 23 24 | mpoeq123dv | |- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g e. ( z ^m ( 2nd ` v ) ) , f e. ( ( 2nd ` v ) ^m ( 1st ` v ) ) |-> ( g o. f ) ) = ( g e. ( Z ^m Y ) , f e. ( Y ^m X ) |-> ( g o. f ) ) ) |
| 26 | 4 5 | opelxpd | |- ( ph -> <. X , Y >. e. ( U X. U ) ) |
| 27 | ovex | |- ( Z ^m Y ) e. _V |
|
| 28 | ovex | |- ( Y ^m X ) e. _V |
|
| 29 | 27 28 | mpoex | |- ( g e. ( Z ^m Y ) , f e. ( Y ^m X ) |-> ( g o. f ) ) e. _V |
| 30 | 29 | a1i | |- ( ph -> ( g e. ( Z ^m Y ) , f e. ( Y ^m X ) |-> ( g o. f ) ) e. _V ) |
| 31 | 9 25 26 6 30 | ovmpod | |- ( ph -> ( <. X , Y >. .x. Z ) = ( g e. ( Z ^m Y ) , f e. ( Y ^m X ) |-> ( g o. f ) ) ) |
| 32 | simprl | |- ( ( ph /\ ( g = G /\ f = F ) ) -> g = G ) |
|
| 33 | simprr | |- ( ( ph /\ ( g = G /\ f = F ) ) -> f = F ) |
|
| 34 | 32 33 | coeq12d | |- ( ( ph /\ ( g = G /\ f = F ) ) -> ( g o. f ) = ( G o. F ) ) |
| 35 | 6 5 | elmapd | |- ( ph -> ( G e. ( Z ^m Y ) <-> G : Y --> Z ) ) |
| 36 | 8 35 | mpbird | |- ( ph -> G e. ( Z ^m Y ) ) |
| 37 | 5 4 | elmapd | |- ( ph -> ( F e. ( Y ^m X ) <-> F : X --> Y ) ) |
| 38 | 7 37 | mpbird | |- ( ph -> F e. ( Y ^m X ) ) |
| 39 | coexg | |- ( ( G e. ( Z ^m Y ) /\ F e. ( Y ^m X ) ) -> ( G o. F ) e. _V ) |
|
| 40 | 36 38 39 | syl2anc | |- ( ph -> ( G o. F ) e. _V ) |
| 41 | 31 34 36 38 40 | ovmpod | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |