This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCatU categories for different U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resssetc.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| resssetc.d | ⊢ 𝐷 = ( SetCat ‘ 𝑉 ) | ||
| resssetc.1 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | ||
| resssetc.2 | ⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) | ||
| Assertion | resssetc | ⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ∧ ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resssetc.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | resssetc.d | ⊢ 𝐷 = ( SetCat ‘ 𝑉 ) | |
| 3 | resssetc.1 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | |
| 4 | resssetc.2 | ⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) | |
| 5 | 3 4 | ssexd | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑉 ∈ V ) |
| 7 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) | |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) | |
| 10 | 2 6 7 8 9 | setchom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑦 ↑m 𝑥 ) ) |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑈 ∈ 𝑊 ) |
| 12 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑉 ⊆ 𝑈 ) |
| 14 | 13 8 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑈 ) |
| 15 | 13 9 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑈 ) |
| 16 | 1 11 12 14 15 | setchom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑦 ↑m 𝑥 ) ) |
| 17 | eqid | ⊢ ( 𝐶 ↾s 𝑉 ) = ( 𝐶 ↾s 𝑉 ) | |
| 18 | 17 12 | resshom | ⊢ ( 𝑉 ∈ V → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 19 | 5 18 | syl | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 20 | 19 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) ) |
| 21 | 10 16 20 | 3eqtr2rd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 22 | 21 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 23 | eqid | ⊢ ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) | |
| 24 | 1 3 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 25 | 4 24 | sseqtrd | ⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝐶 ) ) |
| 26 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 27 | 17 26 | ressbas2 | ⊢ ( 𝑉 ⊆ ( Base ‘ 𝐶 ) → 𝑉 = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 28 | 25 27 | syl | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 29 | 2 5 | setcbas | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝐷 ) ) |
| 30 | 23 7 28 29 | homfeq | ⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 31 | 22 30 | mpbird | ⊢ ( 𝜑 → ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ) |
| 32 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑉 ∈ V ) |
| 33 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 34 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ 𝑉 ) | |
| 35 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ 𝑉 ) | |
| 36 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ 𝑉 ) | |
| 37 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) | |
| 38 | 2 32 7 34 35 | elsetchom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ↔ 𝑓 : 𝑥 ⟶ 𝑦 ) ) |
| 39 | 37 38 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑓 : 𝑥 ⟶ 𝑦 ) |
| 40 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) | |
| 41 | 2 32 7 35 36 | elsetchom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↔ 𝑔 : 𝑦 ⟶ 𝑧 ) ) |
| 42 | 40 41 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑔 : 𝑦 ⟶ 𝑧 ) |
| 43 | 2 32 33 34 35 36 39 42 | setcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
| 44 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑈 ∈ 𝑊 ) |
| 45 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 46 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑉 ⊆ 𝑈 ) |
| 47 | 46 34 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ 𝑈 ) |
| 48 | 46 35 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ 𝑈 ) |
| 49 | 46 36 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ 𝑈 ) |
| 50 | 1 44 45 47 48 49 39 42 | setcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
| 51 | 17 45 | ressco | ⊢ ( 𝑉 ∈ V → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 52 | 5 51 | syl | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 54 | 53 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) ) |
| 55 | 54 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 56 | 43 50 55 | 3eqtr2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 57 | 56 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 58 | 57 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 59 | eqid | ⊢ ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) | |
| 60 | 31 | eqcomd | ⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 61 | 33 59 7 29 28 60 | comfeq | ⊢ ( 𝜑 → ( ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) ) |
| 62 | 58 61 | mpbird | ⊢ ( 𝜑 → ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 63 | 62 | eqcomd | ⊢ ( 𝜑 → ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) |
| 64 | 31 63 | jca | ⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ∧ ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) ) |