This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resssetc.c | |- C = ( SetCat ` U ) |
|
| resssetc.d | |- D = ( SetCat ` V ) |
||
| resssetc.1 | |- ( ph -> U e. W ) |
||
| resssetc.2 | |- ( ph -> V C_ U ) |
||
| Assertion | funcsetcres2 | |- ( ph -> ( E Func D ) C_ ( E Func C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resssetc.c | |- C = ( SetCat ` U ) |
|
| 2 | resssetc.d | |- D = ( SetCat ` V ) |
|
| 3 | resssetc.1 | |- ( ph -> U e. W ) |
|
| 4 | resssetc.2 | |- ( ph -> V C_ U ) |
|
| 5 | eqidd | |- ( ( ph /\ f e. ( E Func D ) ) -> ( Homf ` E ) = ( Homf ` E ) ) |
|
| 6 | eqidd | |- ( ( ph /\ f e. ( E Func D ) ) -> ( comf ` E ) = ( comf ` E ) ) |
|
| 7 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 8 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 9 | 1 | setccat | |- ( U e. W -> C e. Cat ) |
| 10 | 3 9 | syl | |- ( ph -> C e. Cat ) |
| 11 | 10 | adantr | |- ( ( ph /\ f e. ( E Func D ) ) -> C e. Cat ) |
| 12 | 1 3 | setcbas | |- ( ph -> U = ( Base ` C ) ) |
| 13 | 4 12 | sseqtrd | |- ( ph -> V C_ ( Base ` C ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ f e. ( E Func D ) ) -> V C_ ( Base ` C ) ) |
| 15 | eqid | |- ( C |`s V ) = ( C |`s V ) |
|
| 16 | eqid | |- ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) = ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) |
|
| 17 | 7 8 11 14 15 16 | fullresc | |- ( ( ph /\ f e. ( E Func D ) ) -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) /\ ( comf ` ( C |`s V ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) ) ) |
| 18 | 17 | simpld | |- ( ( ph /\ f e. ( E Func D ) ) -> ( Homf ` ( C |`s V ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) ) |
| 19 | 1 2 3 4 | resssetc | |- ( ph -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` D ) /\ ( comf ` ( C |`s V ) ) = ( comf ` D ) ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ f e. ( E Func D ) ) -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` D ) /\ ( comf ` ( C |`s V ) ) = ( comf ` D ) ) ) |
| 21 | 20 | simpld | |- ( ( ph /\ f e. ( E Func D ) ) -> ( Homf ` ( C |`s V ) ) = ( Homf ` D ) ) |
| 22 | 18 21 | eqtr3d | |- ( ( ph /\ f e. ( E Func D ) ) -> ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) = ( Homf ` D ) ) |
| 23 | 17 | simprd | |- ( ( ph /\ f e. ( E Func D ) ) -> ( comf ` ( C |`s V ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) ) |
| 24 | 20 | simprd | |- ( ( ph /\ f e. ( E Func D ) ) -> ( comf ` ( C |`s V ) ) = ( comf ` D ) ) |
| 25 | 23 24 | eqtr3d | |- ( ( ph /\ f e. ( E Func D ) ) -> ( comf ` ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) = ( comf ` D ) ) |
| 26 | funcrcl | |- ( f e. ( E Func D ) -> ( E e. Cat /\ D e. Cat ) ) |
|
| 27 | 26 | adantl | |- ( ( ph /\ f e. ( E Func D ) ) -> ( E e. Cat /\ D e. Cat ) ) |
| 28 | 27 | simpld | |- ( ( ph /\ f e. ( E Func D ) ) -> E e. Cat ) |
| 29 | 7 8 11 14 | fullsubc | |- ( ( ph /\ f e. ( E Func D ) ) -> ( ( Homf ` C ) |` ( V X. V ) ) e. ( Subcat ` C ) ) |
| 30 | 16 29 | subccat | |- ( ( ph /\ f e. ( E Func D ) ) -> ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) e. Cat ) |
| 31 | 27 | simprd | |- ( ( ph /\ f e. ( E Func D ) ) -> D e. Cat ) |
| 32 | 5 6 22 25 28 28 30 31 | funcpropd | |- ( ( ph /\ f e. ( E Func D ) ) -> ( E Func ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) = ( E Func D ) ) |
| 33 | funcres2 | |- ( ( ( Homf ` C ) |` ( V X. V ) ) e. ( Subcat ` C ) -> ( E Func ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) C_ ( E Func C ) ) |
|
| 34 | 29 33 | syl | |- ( ( ph /\ f e. ( E Func D ) ) -> ( E Func ( C |`cat ( ( Homf ` C ) |` ( V X. V ) ) ) ) C_ ( E Func C ) ) |
| 35 | 32 34 | eqsstrrd | |- ( ( ph /\ f e. ( E Func D ) ) -> ( E Func D ) C_ ( E Func C ) ) |
| 36 | simpr | |- ( ( ph /\ f e. ( E Func D ) ) -> f e. ( E Func D ) ) |
|
| 37 | 35 36 | sseldd | |- ( ( ph /\ f e. ( E Func D ) ) -> f e. ( E Func C ) ) |
| 38 | 37 | ex | |- ( ph -> ( f e. ( E Func D ) -> f e. ( E Func C ) ) ) |
| 39 | 38 | ssrdv | |- ( ph -> ( E Func D ) C_ ( E Func C ) ) |