This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcbas.c | |- C = ( SetCat ` U ) |
|
| setcbas.u | |- ( ph -> U e. V ) |
||
| setchomfval.h | |- H = ( Hom ` C ) |
||
| setchom.x | |- ( ph -> X e. U ) |
||
| setchom.y | |- ( ph -> Y e. U ) |
||
| Assertion | setchom | |- ( ph -> ( X H Y ) = ( Y ^m X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | |- C = ( SetCat ` U ) |
|
| 2 | setcbas.u | |- ( ph -> U e. V ) |
|
| 3 | setchomfval.h | |- H = ( Hom ` C ) |
|
| 4 | setchom.x | |- ( ph -> X e. U ) |
|
| 5 | setchom.y | |- ( ph -> Y e. U ) |
|
| 6 | 1 2 3 | setchomfval | |- ( ph -> H = ( x e. U , y e. U |-> ( y ^m x ) ) ) |
| 7 | simprr | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
|
| 8 | simprl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
|
| 9 | 7 8 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( y ^m x ) = ( Y ^m X ) ) |
| 10 | ovexd | |- ( ph -> ( Y ^m X ) e. _V ) |
|
| 11 | 6 9 4 5 10 | ovmpod | |- ( ph -> ( X H Y ) = ( Y ^m X ) ) |