This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for resqrtth . (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resqrtthlem | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | sqrtval | |- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 3 | 2 | eqcomd | |- ( A e. CC -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) |
| 4 | 1 3 | syl | |- ( A e. RR -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) |
| 5 | 4 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) |
| 6 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
| 7 | 6 | recnd | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. CC ) |
| 8 | resqreu | |- ( ( A e. RR /\ 0 <_ A ) -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
|
| 9 | oveq1 | |- ( x = ( sqrt ` A ) -> ( x ^ 2 ) = ( ( sqrt ` A ) ^ 2 ) ) |
|
| 10 | 9 | eqeq1d | |- ( x = ( sqrt ` A ) -> ( ( x ^ 2 ) = A <-> ( ( sqrt ` A ) ^ 2 ) = A ) ) |
| 11 | fveq2 | |- ( x = ( sqrt ` A ) -> ( Re ` x ) = ( Re ` ( sqrt ` A ) ) ) |
|
| 12 | 11 | breq2d | |- ( x = ( sqrt ` A ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( sqrt ` A ) ) ) ) |
| 13 | oveq2 | |- ( x = ( sqrt ` A ) -> ( _i x. x ) = ( _i x. ( sqrt ` A ) ) ) |
|
| 14 | neleq1 | |- ( ( _i x. x ) = ( _i x. ( sqrt ` A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
|
| 15 | 13 14 | syl | |- ( x = ( sqrt ` A ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |
| 16 | 10 12 15 | 3anbi123d | |- ( x = ( sqrt ` A ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) ) |
| 17 | 16 | riota2 | |- ( ( ( sqrt ` A ) e. CC /\ E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) ) |
| 18 | 7 8 17 | syl2anc | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = ( sqrt ` A ) ) ) |
| 19 | 5 18 | mpbird | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( sqrt ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqrt ` A ) ) /\ ( _i x. ( sqrt ` A ) ) e/ RR+ ) ) |