This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsdf2 | |- ( ( S e. V /\ N e. NN0 ) -> ( W = ( S repeatS N ) <-> ( W e. Word V /\ ( # ` W ) = N /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | repsconst | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( ( 0 ..^ N ) X. { S } ) ) |
|
| 2 | 1 | eqeq2d | |- ( ( S e. V /\ N e. NN0 ) -> ( W = ( S repeatS N ) <-> W = ( ( 0 ..^ N ) X. { S } ) ) ) |
| 3 | fconst2g | |- ( S e. V -> ( W : ( 0 ..^ N ) --> { S } <-> W = ( ( 0 ..^ N ) X. { S } ) ) ) |
|
| 4 | 3 | adantr | |- ( ( S e. V /\ N e. NN0 ) -> ( W : ( 0 ..^ N ) --> { S } <-> W = ( ( 0 ..^ N ) X. { S } ) ) ) |
| 5 | fconstfv | |- ( W : ( 0 ..^ N ) --> { S } <-> ( W Fn ( 0 ..^ N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) |
|
| 6 | snssi | |- ( S e. V -> { S } C_ V ) |
|
| 7 | 6 | adantr | |- ( ( S e. V /\ N e. NN0 ) -> { S } C_ V ) |
| 8 | 7 | anim1ci | |- ( ( ( S e. V /\ N e. NN0 ) /\ W : ( 0 ..^ N ) --> { S } ) -> ( W : ( 0 ..^ N ) --> { S } /\ { S } C_ V ) ) |
| 9 | fss | |- ( ( W : ( 0 ..^ N ) --> { S } /\ { S } C_ V ) -> W : ( 0 ..^ N ) --> V ) |
|
| 10 | iswrdi | |- ( W : ( 0 ..^ N ) --> V -> W e. Word V ) |
|
| 11 | 8 9 10 | 3syl | |- ( ( ( S e. V /\ N e. NN0 ) /\ W : ( 0 ..^ N ) --> { S } ) -> W e. Word V ) |
| 12 | ffzo0hash | |- ( ( N e. NN0 /\ W Fn ( 0 ..^ N ) ) -> ( # ` W ) = N ) |
|
| 13 | 12 | expcom | |- ( W Fn ( 0 ..^ N ) -> ( N e. NN0 -> ( # ` W ) = N ) ) |
| 14 | ffn | |- ( W : ( 0 ..^ N ) --> { S } -> W Fn ( 0 ..^ N ) ) |
|
| 15 | 13 14 | syl11 | |- ( N e. NN0 -> ( W : ( 0 ..^ N ) --> { S } -> ( # ` W ) = N ) ) |
| 16 | 15 | adantl | |- ( ( S e. V /\ N e. NN0 ) -> ( W : ( 0 ..^ N ) --> { S } -> ( # ` W ) = N ) ) |
| 17 | 16 | imp | |- ( ( ( S e. V /\ N e. NN0 ) /\ W : ( 0 ..^ N ) --> { S } ) -> ( # ` W ) = N ) |
| 18 | 11 17 | jca | |- ( ( ( S e. V /\ N e. NN0 ) /\ W : ( 0 ..^ N ) --> { S } ) -> ( W e. Word V /\ ( # ` W ) = N ) ) |
| 19 | 18 | ex | |- ( ( S e. V /\ N e. NN0 ) -> ( W : ( 0 ..^ N ) --> { S } -> ( W e. Word V /\ ( # ` W ) = N ) ) ) |
| 20 | 5 19 | biimtrrid | |- ( ( S e. V /\ N e. NN0 ) -> ( ( W Fn ( 0 ..^ N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) -> ( W e. Word V /\ ( # ` W ) = N ) ) ) |
| 21 | 20 | expcomd | |- ( ( S e. V /\ N e. NN0 ) -> ( A. i e. ( 0 ..^ N ) ( W ` i ) = S -> ( W Fn ( 0 ..^ N ) -> ( W e. Word V /\ ( # ` W ) = N ) ) ) ) |
| 22 | 21 | imp | |- ( ( ( S e. V /\ N e. NN0 ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) -> ( W Fn ( 0 ..^ N ) -> ( W e. Word V /\ ( # ` W ) = N ) ) ) |
| 23 | wrdf | |- ( W e. Word V -> W : ( 0 ..^ ( # ` W ) ) --> V ) |
|
| 24 | ffn | |- ( W : ( 0 ..^ ( # ` W ) ) --> V -> W Fn ( 0 ..^ ( # ` W ) ) ) |
|
| 25 | oveq2 | |- ( ( # ` W ) = N -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ N ) ) |
|
| 26 | 25 | fneq2d | |- ( ( # ` W ) = N -> ( W Fn ( 0 ..^ ( # ` W ) ) <-> W Fn ( 0 ..^ N ) ) ) |
| 27 | 26 | biimpd | |- ( ( # ` W ) = N -> ( W Fn ( 0 ..^ ( # ` W ) ) -> W Fn ( 0 ..^ N ) ) ) |
| 28 | 27 | a1d | |- ( ( # ` W ) = N -> ( ( S e. V /\ N e. NN0 ) -> ( W Fn ( 0 ..^ ( # ` W ) ) -> W Fn ( 0 ..^ N ) ) ) ) |
| 29 | 28 | com13 | |- ( W Fn ( 0 ..^ ( # ` W ) ) -> ( ( S e. V /\ N e. NN0 ) -> ( ( # ` W ) = N -> W Fn ( 0 ..^ N ) ) ) ) |
| 30 | 23 24 29 | 3syl | |- ( W e. Word V -> ( ( S e. V /\ N e. NN0 ) -> ( ( # ` W ) = N -> W Fn ( 0 ..^ N ) ) ) ) |
| 31 | 30 | com12 | |- ( ( S e. V /\ N e. NN0 ) -> ( W e. Word V -> ( ( # ` W ) = N -> W Fn ( 0 ..^ N ) ) ) ) |
| 32 | 31 | impd | |- ( ( S e. V /\ N e. NN0 ) -> ( ( W e. Word V /\ ( # ` W ) = N ) -> W Fn ( 0 ..^ N ) ) ) |
| 33 | 32 | adantr | |- ( ( ( S e. V /\ N e. NN0 ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) -> ( ( W e. Word V /\ ( # ` W ) = N ) -> W Fn ( 0 ..^ N ) ) ) |
| 34 | 22 33 | impbid | |- ( ( ( S e. V /\ N e. NN0 ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) -> ( W Fn ( 0 ..^ N ) <-> ( W e. Word V /\ ( # ` W ) = N ) ) ) |
| 35 | 34 | ex | |- ( ( S e. V /\ N e. NN0 ) -> ( A. i e. ( 0 ..^ N ) ( W ` i ) = S -> ( W Fn ( 0 ..^ N ) <-> ( W e. Word V /\ ( # ` W ) = N ) ) ) ) |
| 36 | 35 | pm5.32rd | |- ( ( S e. V /\ N e. NN0 ) -> ( ( W Fn ( 0 ..^ N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) <-> ( ( W e. Word V /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) ) |
| 37 | df-3an | |- ( ( W e. Word V /\ ( # ` W ) = N /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) <-> ( ( W e. Word V /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) |
|
| 38 | 36 5 37 | 3bitr4g | |- ( ( S e. V /\ N e. NN0 ) -> ( W : ( 0 ..^ N ) --> { S } <-> ( W e. Word V /\ ( # ` W ) = N /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) ) |
| 39 | 2 4 38 | 3bitr2d | |- ( ( S e. V /\ N e. NN0 ) -> ( W = ( S repeatS N ) <-> ( W e. Word V /\ ( # ` W ) = N /\ A. i e. ( 0 ..^ N ) ( W ` i ) = S ) ) ) |