This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fconst2g | |- ( B e. C -> ( F : A --> { B } <-> F = ( A X. { B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst | |- ( ( F : A --> { B } /\ x e. A ) -> ( F ` x ) = B ) |
|
| 2 | 1 | adantlr | |- ( ( ( F : A --> { B } /\ B e. C ) /\ x e. A ) -> ( F ` x ) = B ) |
| 3 | fvconst2g | |- ( ( B e. C /\ x e. A ) -> ( ( A X. { B } ) ` x ) = B ) |
|
| 4 | 3 | adantll | |- ( ( ( F : A --> { B } /\ B e. C ) /\ x e. A ) -> ( ( A X. { B } ) ` x ) = B ) |
| 5 | 2 4 | eqtr4d | |- ( ( ( F : A --> { B } /\ B e. C ) /\ x e. A ) -> ( F ` x ) = ( ( A X. { B } ) ` x ) ) |
| 6 | 5 | ralrimiva | |- ( ( F : A --> { B } /\ B e. C ) -> A. x e. A ( F ` x ) = ( ( A X. { B } ) ` x ) ) |
| 7 | ffn | |- ( F : A --> { B } -> F Fn A ) |
|
| 8 | fnconstg | |- ( B e. C -> ( A X. { B } ) Fn A ) |
|
| 9 | eqfnfv | |- ( ( F Fn A /\ ( A X. { B } ) Fn A ) -> ( F = ( A X. { B } ) <-> A. x e. A ( F ` x ) = ( ( A X. { B } ) ` x ) ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( F : A --> { B } /\ B e. C ) -> ( F = ( A X. { B } ) <-> A. x e. A ( F ` x ) = ( ( A X. { B } ) ` x ) ) ) |
| 11 | 6 10 | mpbird | |- ( ( F : A --> { B } /\ B e. C ) -> F = ( A X. { B } ) ) |
| 12 | 11 | expcom | |- ( B e. C -> ( F : A --> { B } -> F = ( A X. { B } ) ) ) |
| 13 | fconstg | |- ( B e. C -> ( A X. { B } ) : A --> { B } ) |
|
| 14 | feq1 | |- ( F = ( A X. { B } ) -> ( F : A --> { B } <-> ( A X. { B } ) : A --> { B } ) ) |
|
| 15 | 13 14 | syl5ibrcom | |- ( B e. C -> ( F = ( A X. { B } ) -> F : A --> { B } ) ) |
| 16 | 12 15 | impbid | |- ( B e. C -> ( F : A --> { B } <-> F = ( A X. { B } ) ) ) |