This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All the symbols of a "repeated symbol word" are the same. (Contributed by AV, 10-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswsymball | |- ( ( W e. Word V /\ S e. V ) -> ( W = ( S repeatS ( # ` W ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an | |- ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) |
|
| 2 | 1 | a1i | |- ( ( W e. Word V /\ S e. V ) -> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) ) |
| 3 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 4 | 3 | anim1ci | |- ( ( W e. Word V /\ S e. V ) -> ( S e. V /\ ( # ` W ) e. NN0 ) ) |
| 5 | repsdf2 | |- ( ( S e. V /\ ( # ` W ) e. NN0 ) -> ( W = ( S repeatS ( # ` W ) ) <-> ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( W e. Word V /\ S e. V ) -> ( W = ( S repeatS ( # ` W ) ) <-> ( W e. Word V /\ ( # ` W ) = ( # ` W ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) ) |
| 7 | simpl | |- ( ( W e. Word V /\ S e. V ) -> W e. Word V ) |
|
| 8 | eqidd | |- ( ( W e. Word V /\ S e. V ) -> ( # ` W ) = ( # ` W ) ) |
|
| 9 | 7 8 | jca | |- ( ( W e. Word V /\ S e. V ) -> ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) ) |
| 10 | 9 | biantrurd | |- ( ( W e. Word V /\ S e. V ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S <-> ( ( W e. Word V /\ ( # ` W ) = ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) ) |
| 11 | 2 6 10 | 3bitr4d | |- ( ( W e. Word V /\ S e. V ) -> ( W = ( S repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) |
| 12 | 11 | biimpd | |- ( ( W e. Word V /\ S e. V ) -> ( W = ( S repeatS ( # ` W ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = S ) ) |