This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsdf2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 = ( 𝑆 repeatS 𝑁 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | repsconst | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) = ( ( 0 ..^ 𝑁 ) × { 𝑆 } ) ) | |
| 2 | 1 | eqeq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 = ( 𝑆 repeatS 𝑁 ) ↔ 𝑊 = ( ( 0 ..^ 𝑁 ) × { 𝑆 } ) ) ) |
| 3 | fconst2g | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ↔ 𝑊 = ( ( 0 ..^ 𝑁 ) × { 𝑆 } ) ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ↔ 𝑊 = ( ( 0 ..^ 𝑁 ) × { 𝑆 } ) ) ) |
| 5 | fconstfv | ⊢ ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ↔ ( 𝑊 Fn ( 0 ..^ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) | |
| 6 | snssi | ⊢ ( 𝑆 ∈ 𝑉 → { 𝑆 } ⊆ 𝑉 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → { 𝑆 } ⊆ 𝑉 ) |
| 8 | 7 | anim1ci | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ) → ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ∧ { 𝑆 } ⊆ 𝑉 ) ) |
| 9 | fss | ⊢ ( ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ∧ { 𝑆 } ⊆ 𝑉 ) → 𝑊 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) | |
| 10 | iswrdi | ⊢ ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ 𝑉 → 𝑊 ∈ Word 𝑉 ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ) → 𝑊 ∈ Word 𝑉 ) |
| 12 | ffzo0hash | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 Fn ( 0 ..^ 𝑁 ) ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) | |
| 13 | 12 | expcom | ⊢ ( 𝑊 Fn ( 0 ..^ 𝑁 ) → ( 𝑁 ∈ ℕ0 → ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 14 | ffn | ⊢ ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } → 𝑊 Fn ( 0 ..^ 𝑁 ) ) | |
| 15 | 13 14 | syl11 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } → ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } → ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) |
| 18 | 11 17 | jca | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
| 20 | 5 19 | biimtrrid | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 Fn ( 0 ..^ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
| 21 | 20 | expcomd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 → ( 𝑊 Fn ( 0 ..^ 𝑁 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) ) |
| 22 | 21 | imp | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) → ( 𝑊 Fn ( 0 ..^ 𝑁 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
| 23 | wrdf | ⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉 ) | |
| 24 | ffn | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 25 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝑁 ) ) | |
| 26 | 25 | fneq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑊 Fn ( 0 ..^ 𝑁 ) ) ) |
| 27 | 26 | biimpd | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑊 Fn ( 0 ..^ 𝑁 ) ) ) |
| 28 | 27 | a1d | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑊 Fn ( 0 ..^ 𝑁 ) ) ) ) |
| 29 | 28 | com13 | ⊢ ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) = 𝑁 → 𝑊 Fn ( 0 ..^ 𝑁 ) ) ) ) |
| 30 | 23 24 29 | 3syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) = 𝑁 → 𝑊 Fn ( 0 ..^ 𝑁 ) ) ) ) |
| 31 | 30 | com12 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) = 𝑁 → 𝑊 Fn ( 0 ..^ 𝑁 ) ) ) ) |
| 32 | 31 | impd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑊 Fn ( 0 ..^ 𝑁 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑊 Fn ( 0 ..^ 𝑁 ) ) ) |
| 34 | 22 33 | impbid | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) → ( 𝑊 Fn ( 0 ..^ 𝑁 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
| 35 | 34 | ex | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 → ( 𝑊 Fn ( 0 ..^ 𝑁 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) ) |
| 36 | 35 | pm5.32rd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 Fn ( 0 ..^ 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
| 37 | df-3an | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) | |
| 38 | 36 5 37 | 3bitr4g | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 : ( 0 ..^ 𝑁 ) ⟶ { 𝑆 } ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |
| 39 | 2 4 38 | 3bitr2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 = ( 𝑆 repeatS 𝑁 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝑆 ) ) ) |