This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perfection of a subspace. Note that the term "perfect set" is reserved forclosed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restcls.1 | |- X = U. J |
|
| restcls.2 | |- K = ( J |`t Y ) |
||
| Assertion | restperf | |- ( ( J e. Top /\ Y C_ X ) -> ( K e. Perf <-> Y C_ ( ( limPt ` J ) ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.1 | |- X = U. J |
|
| 2 | restcls.2 | |- K = ( J |`t Y ) |
|
| 3 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 4 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ Y C_ X ) -> ( J |`t Y ) e. ( TopOn ` Y ) ) |
|
| 5 | 3 4 | sylanb | |- ( ( J e. Top /\ Y C_ X ) -> ( J |`t Y ) e. ( TopOn ` Y ) ) |
| 6 | 2 5 | eqeltrid | |- ( ( J e. Top /\ Y C_ X ) -> K e. ( TopOn ` Y ) ) |
| 7 | topontop | |- ( K e. ( TopOn ` Y ) -> K e. Top ) |
|
| 8 | 6 7 | syl | |- ( ( J e. Top /\ Y C_ X ) -> K e. Top ) |
| 9 | eqid | |- U. K = U. K |
|
| 10 | 9 | isperf | |- ( K e. Perf <-> ( K e. Top /\ ( ( limPt ` K ) ` U. K ) = U. K ) ) |
| 11 | 10 | baib | |- ( K e. Top -> ( K e. Perf <-> ( ( limPt ` K ) ` U. K ) = U. K ) ) |
| 12 | 8 11 | syl | |- ( ( J e. Top /\ Y C_ X ) -> ( K e. Perf <-> ( ( limPt ` K ) ` U. K ) = U. K ) ) |
| 13 | sseqin2 | |- ( Y C_ ( ( limPt ` J ) ` Y ) <-> ( ( ( limPt ` J ) ` Y ) i^i Y ) = Y ) |
|
| 14 | ssid | |- Y C_ Y |
|
| 15 | 1 2 | restlp | |- ( ( J e. Top /\ Y C_ X /\ Y C_ Y ) -> ( ( limPt ` K ) ` Y ) = ( ( ( limPt ` J ) ` Y ) i^i Y ) ) |
| 16 | 14 15 | mp3an3 | |- ( ( J e. Top /\ Y C_ X ) -> ( ( limPt ` K ) ` Y ) = ( ( ( limPt ` J ) ` Y ) i^i Y ) ) |
| 17 | toponuni | |- ( K e. ( TopOn ` Y ) -> Y = U. K ) |
|
| 18 | 6 17 | syl | |- ( ( J e. Top /\ Y C_ X ) -> Y = U. K ) |
| 19 | 18 | fveq2d | |- ( ( J e. Top /\ Y C_ X ) -> ( ( limPt ` K ) ` Y ) = ( ( limPt ` K ) ` U. K ) ) |
| 20 | 16 19 | eqtr3d | |- ( ( J e. Top /\ Y C_ X ) -> ( ( ( limPt ` J ) ` Y ) i^i Y ) = ( ( limPt ` K ) ` U. K ) ) |
| 21 | 20 18 | eqeq12d | |- ( ( J e. Top /\ Y C_ X ) -> ( ( ( ( limPt ` J ) ` Y ) i^i Y ) = Y <-> ( ( limPt ` K ) ` U. K ) = U. K ) ) |
| 22 | 13 21 | bitrid | |- ( ( J e. Top /\ Y C_ X ) -> ( Y C_ ( ( limPt ` J ) ` Y ) <-> ( ( limPt ` K ) ` U. K ) = U. K ) ) |
| 23 | 12 22 | bitr4d | |- ( ( J e. Top /\ Y C_ X ) -> ( K e. Perf <-> Y C_ ( ( limPt ` J ) ` Y ) ) ) |