This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " P is a limit point of S " in terms of neighborhoods. Definition of limit point in Munkres p. 97. Although Munkres uses open neighborhoods, it also works for our more general neighborhoods. (Contributed by NM, 26-Feb-2007) (Proof shortened by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | islp2 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | islp | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |
| 3 | 2 | 3adant3 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |
| 4 | ssdifss | |- ( S C_ X -> ( S \ { P } ) C_ X ) |
|
| 5 | 1 | neindisj2 | |- ( ( J e. Top /\ ( S \ { P } ) C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` ( S \ { P } ) ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
| 6 | 4 5 | syl3an2 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` ( S \ { P } ) ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) ) |
| 7 | 3 6 | bitrd | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i ( S \ { P } ) ) =/= (/) ) ) |