This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recp1lt1 | |- ( ( A e. RR /\ 0 <_ A ) -> ( A / ( 1 + A ) ) < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1 | |- ( A e. RR -> A < ( A + 1 ) ) |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | addcom | |- ( ( A e. CC /\ 1 e. CC ) -> ( A + 1 ) = ( 1 + A ) ) |
|
| 5 | 2 3 4 | sylancl | |- ( A e. RR -> ( A + 1 ) = ( 1 + A ) ) |
| 6 | 1 5 | breqtrd | |- ( A e. RR -> A < ( 1 + A ) ) |
| 7 | 6 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> A < ( 1 + A ) ) |
| 8 | 2 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 9 | 1re | |- 1 e. RR |
|
| 10 | readdcl | |- ( ( 1 e. RR /\ A e. RR ) -> ( 1 + A ) e. RR ) |
|
| 11 | 9 10 | mpan | |- ( A e. RR -> ( 1 + A ) e. RR ) |
| 12 | 11 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> ( 1 + A ) e. RR ) |
| 13 | 12 | recnd | |- ( ( A e. RR /\ 0 <_ A ) -> ( 1 + A ) e. CC ) |
| 14 | 0lt1 | |- 0 < 1 |
|
| 15 | addgtge0 | |- ( ( ( 1 e. RR /\ A e. RR ) /\ ( 0 < 1 /\ 0 <_ A ) ) -> 0 < ( 1 + A ) ) |
|
| 16 | 14 15 | mpanr1 | |- ( ( ( 1 e. RR /\ A e. RR ) /\ 0 <_ A ) -> 0 < ( 1 + A ) ) |
| 17 | 9 16 | mpanl1 | |- ( ( A e. RR /\ 0 <_ A ) -> 0 < ( 1 + A ) ) |
| 18 | 17 | gt0ne0d | |- ( ( A e. RR /\ 0 <_ A ) -> ( 1 + A ) =/= 0 ) |
| 19 | 8 13 18 | divcan1d | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) = A ) |
| 20 | 11 | recnd | |- ( A e. RR -> ( 1 + A ) e. CC ) |
| 21 | 20 | mullidd | |- ( A e. RR -> ( 1 x. ( 1 + A ) ) = ( 1 + A ) ) |
| 22 | 21 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> ( 1 x. ( 1 + A ) ) = ( 1 + A ) ) |
| 23 | 7 19 22 | 3brtr4d | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) < ( 1 x. ( 1 + A ) ) ) |
| 24 | simpl | |- ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) |
|
| 25 | 24 12 18 | redivcld | |- ( ( A e. RR /\ 0 <_ A ) -> ( A / ( 1 + A ) ) e. RR ) |
| 26 | ltmul1 | |- ( ( ( A / ( 1 + A ) ) e. RR /\ 1 e. RR /\ ( ( 1 + A ) e. RR /\ 0 < ( 1 + A ) ) ) -> ( ( A / ( 1 + A ) ) < 1 <-> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) < ( 1 x. ( 1 + A ) ) ) ) |
|
| 27 | 9 26 | mp3an2 | |- ( ( ( A / ( 1 + A ) ) e. RR /\ ( ( 1 + A ) e. RR /\ 0 < ( 1 + A ) ) ) -> ( ( A / ( 1 + A ) ) < 1 <-> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) < ( 1 x. ( 1 + A ) ) ) ) |
| 28 | 25 12 17 27 | syl12anc | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( A / ( 1 + A ) ) < 1 <-> ( ( A / ( 1 + A ) ) x. ( 1 + A ) ) < ( 1 x. ( 1 + A ) ) ) ) |
| 29 | 23 28 | mpbird | |- ( ( A e. RR /\ 0 <_ A ) -> ( A / ( 1 + A ) ) < 1 ) |