This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cn1lem.1 | |- F : CC --> CC |
|
| cn1lem.2 | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
||
| Assertion | cn1lem | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn1lem.1 | |- F : CC --> CC |
|
| 2 | cn1lem.2 | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
|
| 3 | simpr | |- ( ( A e. CC /\ x e. RR+ ) -> x e. RR+ ) |
|
| 4 | simpr | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> z e. CC ) |
|
| 5 | simpll | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> A e. CC ) |
|
| 6 | 4 5 2 | syl2anc | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 7 | 1 | ffvelcdmi | |- ( z e. CC -> ( F ` z ) e. CC ) |
| 8 | 4 7 | syl | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( F ` z ) e. CC ) |
| 9 | 1 | ffvelcdmi | |- ( A e. CC -> ( F ` A ) e. CC ) |
| 10 | 5 9 | syl | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( F ` A ) e. CC ) |
| 11 | 8 10 | subcld | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( F ` z ) - ( F ` A ) ) e. CC ) |
| 12 | 11 | abscld | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) e. RR ) |
| 13 | 4 5 | subcld | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( z - A ) e. CC ) |
| 14 | 13 | abscld | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( z - A ) ) e. RR ) |
| 15 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 16 | 15 | ad2antlr | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> x e. RR ) |
| 17 | lelttr | |- ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) e. RR /\ ( abs ` ( z - A ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) /\ ( abs ` ( z - A ) ) < x ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
|
| 18 | 12 14 16 17 | syl3anc | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) /\ ( abs ` ( z - A ) ) < x ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 19 | 6 18 | mpand | |- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 20 | 19 | ralrimiva | |- ( ( A e. CC /\ x e. RR+ ) -> A. z e. CC ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 21 | breq2 | |- ( y = x -> ( ( abs ` ( z - A ) ) < y <-> ( abs ` ( z - A ) ) < x ) ) |
|
| 22 | 21 | rspceaimv | |- ( ( x e. RR+ /\ A. z e. CC ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 23 | 3 20 22 | syl2anc | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |