This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right cancellation of an inverse of an isomorphism. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rcaninv.b | |- B = ( Base ` C ) |
|
| rcaninv.n | |- N = ( Inv ` C ) |
||
| rcaninv.c | |- ( ph -> C e. Cat ) |
||
| rcaninv.x | |- ( ph -> X e. B ) |
||
| rcaninv.y | |- ( ph -> Y e. B ) |
||
| rcaninv.z | |- ( ph -> Z e. B ) |
||
| rcaninv.f | |- ( ph -> F e. ( Y ( Iso ` C ) X ) ) |
||
| rcaninv.g | |- ( ph -> G e. ( Y ( Hom ` C ) Z ) ) |
||
| rcaninv.h | |- ( ph -> H e. ( Y ( Hom ` C ) Z ) ) |
||
| rcaninv.1 | |- R = ( ( Y N X ) ` F ) |
||
| rcaninv.o | |- .o. = ( <. X , Y >. ( comp ` C ) Z ) |
||
| Assertion | rcaninv | |- ( ph -> ( ( G .o. R ) = ( H .o. R ) -> G = H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcaninv.b | |- B = ( Base ` C ) |
|
| 2 | rcaninv.n | |- N = ( Inv ` C ) |
|
| 3 | rcaninv.c | |- ( ph -> C e. Cat ) |
|
| 4 | rcaninv.x | |- ( ph -> X e. B ) |
|
| 5 | rcaninv.y | |- ( ph -> Y e. B ) |
|
| 6 | rcaninv.z | |- ( ph -> Z e. B ) |
|
| 7 | rcaninv.f | |- ( ph -> F e. ( Y ( Iso ` C ) X ) ) |
|
| 8 | rcaninv.g | |- ( ph -> G e. ( Y ( Hom ` C ) Z ) ) |
|
| 9 | rcaninv.h | |- ( ph -> H e. ( Y ( Hom ` C ) Z ) ) |
|
| 10 | rcaninv.1 | |- R = ( ( Y N X ) ` F ) |
|
| 11 | rcaninv.o | |- .o. = ( <. X , Y >. ( comp ` C ) Z ) |
|
| 12 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 13 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 14 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 15 | 1 12 14 3 5 4 | isohom | |- ( ph -> ( Y ( Iso ` C ) X ) C_ ( Y ( Hom ` C ) X ) ) |
| 16 | 15 7 | sseldd | |- ( ph -> F e. ( Y ( Hom ` C ) X ) ) |
| 17 | 1 12 14 3 4 5 | isohom | |- ( ph -> ( X ( Iso ` C ) Y ) C_ ( X ( Hom ` C ) Y ) ) |
| 18 | 1 2 3 5 4 14 | invf | |- ( ph -> ( Y N X ) : ( Y ( Iso ` C ) X ) --> ( X ( Iso ` C ) Y ) ) |
| 19 | 18 7 | ffvelcdmd | |- ( ph -> ( ( Y N X ) ` F ) e. ( X ( Iso ` C ) Y ) ) |
| 20 | 17 19 | sseldd | |- ( ph -> ( ( Y N X ) ` F ) e. ( X ( Hom ` C ) Y ) ) |
| 21 | 1 12 13 3 5 4 5 16 20 6 8 | catass | |- ( ph -> ( ( G ( <. X , Y >. ( comp ` C ) Z ) ( ( Y N X ) ` F ) ) ( <. Y , X >. ( comp ` C ) Z ) F ) = ( G ( <. Y , Y >. ( comp ` C ) Z ) ( ( ( Y N X ) ` F ) ( <. Y , X >. ( comp ` C ) Y ) F ) ) ) |
| 22 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 23 | eqid | |- ( <. Y , X >. ( comp ` C ) Y ) = ( <. Y , X >. ( comp ` C ) Y ) |
|
| 24 | 1 14 2 3 5 4 7 22 23 | invcoisoid | |- ( ph -> ( ( ( Y N X ) ` F ) ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) |
| 25 | 24 | eqcomd | |- ( ph -> ( ( Id ` C ) ` Y ) = ( ( ( Y N X ) ` F ) ( <. Y , X >. ( comp ` C ) Y ) F ) ) |
| 26 | 25 | oveq2d | |- ( ph -> ( G ( <. Y , Y >. ( comp ` C ) Z ) ( ( Id ` C ) ` Y ) ) = ( G ( <. Y , Y >. ( comp ` C ) Z ) ( ( ( Y N X ) ` F ) ( <. Y , X >. ( comp ` C ) Y ) F ) ) ) |
| 27 | 1 12 22 3 5 13 6 8 | catrid | |- ( ph -> ( G ( <. Y , Y >. ( comp ` C ) Z ) ( ( Id ` C ) ` Y ) ) = G ) |
| 28 | 21 26 27 | 3eqtr2rd | |- ( ph -> G = ( ( G ( <. X , Y >. ( comp ` C ) Z ) ( ( Y N X ) ` F ) ) ( <. Y , X >. ( comp ` C ) Z ) F ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ ( G .o. R ) = ( H .o. R ) ) -> G = ( ( G ( <. X , Y >. ( comp ` C ) Z ) ( ( Y N X ) ` F ) ) ( <. Y , X >. ( comp ` C ) Z ) F ) ) |
| 30 | 11 | eqcomi | |- ( <. X , Y >. ( comp ` C ) Z ) = .o. |
| 31 | 30 | a1i | |- ( ph -> ( <. X , Y >. ( comp ` C ) Z ) = .o. ) |
| 32 | eqidd | |- ( ph -> G = G ) |
|
| 33 | 10 | eqcomi | |- ( ( Y N X ) ` F ) = R |
| 34 | 33 | a1i | |- ( ph -> ( ( Y N X ) ` F ) = R ) |
| 35 | 31 32 34 | oveq123d | |- ( ph -> ( G ( <. X , Y >. ( comp ` C ) Z ) ( ( Y N X ) ` F ) ) = ( G .o. R ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ ( G .o. R ) = ( H .o. R ) ) -> ( G ( <. X , Y >. ( comp ` C ) Z ) ( ( Y N X ) ` F ) ) = ( G .o. R ) ) |
| 37 | simpr | |- ( ( ph /\ ( G .o. R ) = ( H .o. R ) ) -> ( G .o. R ) = ( H .o. R ) ) |
|
| 38 | 36 37 | eqtrd | |- ( ( ph /\ ( G .o. R ) = ( H .o. R ) ) -> ( G ( <. X , Y >. ( comp ` C ) Z ) ( ( Y N X ) ` F ) ) = ( H .o. R ) ) |
| 39 | 38 | oveq1d | |- ( ( ph /\ ( G .o. R ) = ( H .o. R ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) Z ) ( ( Y N X ) ` F ) ) ( <. Y , X >. ( comp ` C ) Z ) F ) = ( ( H .o. R ) ( <. Y , X >. ( comp ` C ) Z ) F ) ) |
| 40 | 11 | oveqi | |- ( H .o. R ) = ( H ( <. X , Y >. ( comp ` C ) Z ) R ) |
| 41 | 40 | oveq1i | |- ( ( H .o. R ) ( <. Y , X >. ( comp ` C ) Z ) F ) = ( ( H ( <. X , Y >. ( comp ` C ) Z ) R ) ( <. Y , X >. ( comp ` C ) Z ) F ) |
| 42 | 41 | a1i | |- ( ph -> ( ( H .o. R ) ( <. Y , X >. ( comp ` C ) Z ) F ) = ( ( H ( <. X , Y >. ( comp ` C ) Z ) R ) ( <. Y , X >. ( comp ` C ) Z ) F ) ) |
| 43 | 10 20 | eqeltrid | |- ( ph -> R e. ( X ( Hom ` C ) Y ) ) |
| 44 | 1 12 13 3 5 4 5 16 43 6 9 | catass | |- ( ph -> ( ( H ( <. X , Y >. ( comp ` C ) Z ) R ) ( <. Y , X >. ( comp ` C ) Z ) F ) = ( H ( <. Y , Y >. ( comp ` C ) Z ) ( R ( <. Y , X >. ( comp ` C ) Y ) F ) ) ) |
| 45 | 10 | oveq1i | |- ( R ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( ( Y N X ) ` F ) ( <. Y , X >. ( comp ` C ) Y ) F ) |
| 46 | 45 | oveq2i | |- ( H ( <. Y , Y >. ( comp ` C ) Z ) ( R ( <. Y , X >. ( comp ` C ) Y ) F ) ) = ( H ( <. Y , Y >. ( comp ` C ) Z ) ( ( ( Y N X ) ` F ) ( <. Y , X >. ( comp ` C ) Y ) F ) ) |
| 47 | 46 | a1i | |- ( ph -> ( H ( <. Y , Y >. ( comp ` C ) Z ) ( R ( <. Y , X >. ( comp ` C ) Y ) F ) ) = ( H ( <. Y , Y >. ( comp ` C ) Z ) ( ( ( Y N X ) ` F ) ( <. Y , X >. ( comp ` C ) Y ) F ) ) ) |
| 48 | 24 | oveq2d | |- ( ph -> ( H ( <. Y , Y >. ( comp ` C ) Z ) ( ( ( Y N X ) ` F ) ( <. Y , X >. ( comp ` C ) Y ) F ) ) = ( H ( <. Y , Y >. ( comp ` C ) Z ) ( ( Id ` C ) ` Y ) ) ) |
| 49 | 44 47 48 | 3eqtrd | |- ( ph -> ( ( H ( <. X , Y >. ( comp ` C ) Z ) R ) ( <. Y , X >. ( comp ` C ) Z ) F ) = ( H ( <. Y , Y >. ( comp ` C ) Z ) ( ( Id ` C ) ` Y ) ) ) |
| 50 | 1 12 22 3 5 13 6 9 | catrid | |- ( ph -> ( H ( <. Y , Y >. ( comp ` C ) Z ) ( ( Id ` C ) ` Y ) ) = H ) |
| 51 | 42 49 50 | 3eqtrd | |- ( ph -> ( ( H .o. R ) ( <. Y , X >. ( comp ` C ) Z ) F ) = H ) |
| 52 | 51 | adantr | |- ( ( ph /\ ( G .o. R ) = ( H .o. R ) ) -> ( ( H .o. R ) ( <. Y , X >. ( comp ` C ) Z ) F ) = H ) |
| 53 | 29 39 52 | 3eqtrd | |- ( ( ph /\ ( G .o. R ) = ( H .o. R ) ) -> G = H ) |
| 54 | 53 | ex | |- ( ph -> ( ( G .o. R ) = ( H .o. R ) -> G = H ) ) |