This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| isoval.n | |- I = ( Iso ` C ) |
||
| Assertion | invf | |- ( ph -> ( X N Y ) : ( X I Y ) --> ( Y I X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | isoval.n | |- I = ( Iso ` C ) |
|
| 7 | 1 2 3 4 5 | invfun | |- ( ph -> Fun ( X N Y ) ) |
| 8 | 7 | funfnd | |- ( ph -> ( X N Y ) Fn dom ( X N Y ) ) |
| 9 | 1 2 3 4 5 6 | isoval | |- ( ph -> ( X I Y ) = dom ( X N Y ) ) |
| 10 | 9 | fneq2d | |- ( ph -> ( ( X N Y ) Fn ( X I Y ) <-> ( X N Y ) Fn dom ( X N Y ) ) ) |
| 11 | 8 10 | mpbird | |- ( ph -> ( X N Y ) Fn ( X I Y ) ) |
| 12 | df-rn | |- ran ( X N Y ) = dom `' ( X N Y ) |
|
| 13 | 1 2 3 4 5 | invsym2 | |- ( ph -> `' ( X N Y ) = ( Y N X ) ) |
| 14 | 13 | dmeqd | |- ( ph -> dom `' ( X N Y ) = dom ( Y N X ) ) |
| 15 | 1 2 3 5 4 6 | isoval | |- ( ph -> ( Y I X ) = dom ( Y N X ) ) |
| 16 | 14 15 | eqtr4d | |- ( ph -> dom `' ( X N Y ) = ( Y I X ) ) |
| 17 | 12 16 | eqtrid | |- ( ph -> ran ( X N Y ) = ( Y I X ) ) |
| 18 | eqimss | |- ( ran ( X N Y ) = ( Y I X ) -> ran ( X N Y ) C_ ( Y I X ) ) |
|
| 19 | 17 18 | syl | |- ( ph -> ran ( X N Y ) C_ ( Y I X ) ) |
| 20 | df-f | |- ( ( X N Y ) : ( X I Y ) --> ( Y I X ) <-> ( ( X N Y ) Fn ( X I Y ) /\ ran ( X N Y ) C_ ( Y I X ) ) ) |
|
| 21 | 11 19 20 | sylanbrc | |- ( ph -> ( X N Y ) : ( X I Y ) --> ( Y I X ) ) |