This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invisoinv.b | |- B = ( Base ` C ) |
|
| invisoinv.i | |- I = ( Iso ` C ) |
||
| invisoinv.n | |- N = ( Inv ` C ) |
||
| invisoinv.c | |- ( ph -> C e. Cat ) |
||
| invisoinv.x | |- ( ph -> X e. B ) |
||
| invisoinv.y | |- ( ph -> Y e. B ) |
||
| invisoinv.f | |- ( ph -> F e. ( X I Y ) ) |
||
| invcoisoid.1 | |- .1. = ( Id ` C ) |
||
| invcoisoid.o | |- .o. = ( <. X , Y >. ( comp ` C ) X ) |
||
| Assertion | invcoisoid | |- ( ph -> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | |- B = ( Base ` C ) |
|
| 2 | invisoinv.i | |- I = ( Iso ` C ) |
|
| 3 | invisoinv.n | |- N = ( Inv ` C ) |
|
| 4 | invisoinv.c | |- ( ph -> C e. Cat ) |
|
| 5 | invisoinv.x | |- ( ph -> X e. B ) |
|
| 6 | invisoinv.y | |- ( ph -> Y e. B ) |
|
| 7 | invisoinv.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 8 | invcoisoid.1 | |- .1. = ( Id ` C ) |
|
| 9 | invcoisoid.o | |- .o. = ( <. X , Y >. ( comp ` C ) X ) |
|
| 10 | 1 2 3 4 5 6 7 | invisoinvr | |- ( ph -> F ( X N Y ) ( ( X N Y ) ` F ) ) |
| 11 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 12 | 1 3 4 5 6 11 | isinv | |- ( ph -> ( F ( X N Y ) ( ( X N Y ) ` F ) <-> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) /\ ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F ) ) ) |
| 13 | simpl | |- ( ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) /\ ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F ) -> F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) ) |
|
| 14 | 12 13 | biimtrdi | |- ( ph -> ( F ( X N Y ) ( ( X N Y ) ` F ) -> F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) ) ) |
| 15 | 10 14 | mpd | |- ( ph -> F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) ) |
| 16 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 17 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 18 | 1 16 2 4 5 6 | isohom | |- ( ph -> ( X I Y ) C_ ( X ( Hom ` C ) Y ) ) |
| 19 | 18 7 | sseldd | |- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
| 20 | 1 16 2 4 6 5 | isohom | |- ( ph -> ( Y I X ) C_ ( Y ( Hom ` C ) X ) ) |
| 21 | 1 3 4 5 6 2 | invf | |- ( ph -> ( X N Y ) : ( X I Y ) --> ( Y I X ) ) |
| 22 | 21 7 | ffvelcdmd | |- ( ph -> ( ( X N Y ) ` F ) e. ( Y I X ) ) |
| 23 | 20 22 | sseldd | |- ( ph -> ( ( X N Y ) ` F ) e. ( Y ( Hom ` C ) X ) ) |
| 24 | 1 16 17 8 11 4 5 6 19 23 | issect2 | |- ( ph -> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) <-> ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) ) ) |
| 25 | 9 | a1i | |- ( ph -> .o. = ( <. X , Y >. ( comp ` C ) X ) ) |
| 26 | 25 | eqcomd | |- ( ph -> ( <. X , Y >. ( comp ` C ) X ) = .o. ) |
| 27 | 26 | oveqd | |- ( ph -> ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( ( X N Y ) ` F ) .o. F ) ) |
| 28 | 27 | eqeq1d | |- ( ph -> ( ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) |
| 29 | 24 28 | bitrd | |- ( ph -> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) |
| 30 | 15 29 | mpbid | |- ( ph -> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) |