This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsdisj2 | |- ( R Er X -> Disj_ x e. ( A /. R ) x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( R Er X /\ ( x e. ( A /. R ) /\ y e. ( A /. R ) ) ) -> R Er X ) |
|
| 2 | simprl | |- ( ( R Er X /\ ( x e. ( A /. R ) /\ y e. ( A /. R ) ) ) -> x e. ( A /. R ) ) |
|
| 3 | simprr | |- ( ( R Er X /\ ( x e. ( A /. R ) /\ y e. ( A /. R ) ) ) -> y e. ( A /. R ) ) |
|
| 4 | 1 2 3 | qsdisj | |- ( ( R Er X /\ ( x e. ( A /. R ) /\ y e. ( A /. R ) ) ) -> ( x = y \/ ( x i^i y ) = (/) ) ) |
| 5 | 4 | ralrimivva | |- ( R Er X -> A. x e. ( A /. R ) A. y e. ( A /. R ) ( x = y \/ ( x i^i y ) = (/) ) ) |
| 6 | id | |- ( x = y -> x = y ) |
|
| 7 | 6 | disjor | |- ( Disj_ x e. ( A /. R ) x <-> A. x e. ( A /. R ) A. y e. ( A /. R ) ( x = y \/ ( x i^i y ) = (/) ) ) |
| 8 | 5 7 | sylibr | |- ( R Er X -> Disj_ x e. ( A /. R ) x ) |