This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qsss.1 | |- ( ph -> R Er A ) |
|
| qsss.2 | |- ( ph -> R e. V ) |
||
| Assertion | uniqs2 | |- ( ph -> U. ( A /. R ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsss.1 | |- ( ph -> R Er A ) |
|
| 2 | qsss.2 | |- ( ph -> R e. V ) |
|
| 3 | uniqsw | |- ( R e. V -> U. ( A /. R ) = ( R " A ) ) |
|
| 4 | 2 3 | syl | |- ( ph -> U. ( A /. R ) = ( R " A ) ) |
| 5 | erdm | |- ( R Er A -> dom R = A ) |
|
| 6 | 1 5 | syl | |- ( ph -> dom R = A ) |
| 7 | 6 | imaeq2d | |- ( ph -> ( R " dom R ) = ( R " A ) ) |
| 8 | 4 7 | eqtr4d | |- ( ph -> U. ( A /. R ) = ( R " dom R ) ) |
| 9 | imadmrn | |- ( R " dom R ) = ran R |
|
| 10 | 8 9 | eqtrdi | |- ( ph -> U. ( A /. R ) = ran R ) |
| 11 | errn | |- ( R Er A -> ran R = A ) |
|
| 12 | 1 11 | syl | |- ( ph -> ran R = A ) |
| 13 | 10 12 | eqtrd | |- ( ph -> U. ( A /. R ) = A ) |