This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummhm2.b | |- B = ( Base ` G ) |
|
| gsummhm2.z | |- .0. = ( 0g ` G ) |
||
| gsummhm2.g | |- ( ph -> G e. CMnd ) |
||
| gsummhm2.h | |- ( ph -> H e. Mnd ) |
||
| gsummhm2.a | |- ( ph -> A e. V ) |
||
| gsummhm2.k | |- ( ph -> ( x e. B |-> C ) e. ( G MndHom H ) ) |
||
| gsummhm2.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsummhm2.w | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
||
| gsummhm2.1 | |- ( x = X -> C = D ) |
||
| gsummhm2.2 | |- ( x = ( G gsum ( k e. A |-> X ) ) -> C = E ) |
||
| Assertion | gsummhm2 | |- ( ph -> ( H gsum ( k e. A |-> D ) ) = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm2.b | |- B = ( Base ` G ) |
|
| 2 | gsummhm2.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsummhm2.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsummhm2.h | |- ( ph -> H e. Mnd ) |
|
| 5 | gsummhm2.a | |- ( ph -> A e. V ) |
|
| 6 | gsummhm2.k | |- ( ph -> ( x e. B |-> C ) e. ( G MndHom H ) ) |
|
| 7 | gsummhm2.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 8 | gsummhm2.w | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
|
| 9 | gsummhm2.1 | |- ( x = X -> C = D ) |
|
| 10 | gsummhm2.2 | |- ( x = ( G gsum ( k e. A |-> X ) ) -> C = E ) |
|
| 11 | 7 | fmpttd | |- ( ph -> ( k e. A |-> X ) : A --> B ) |
| 12 | 1 2 3 4 5 6 11 8 | gsummhm | |- ( ph -> ( H gsum ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) ) = ( ( x e. B |-> C ) ` ( G gsum ( k e. A |-> X ) ) ) ) |
| 13 | eqidd | |- ( ph -> ( k e. A |-> X ) = ( k e. A |-> X ) ) |
|
| 14 | eqidd | |- ( ph -> ( x e. B |-> C ) = ( x e. B |-> C ) ) |
|
| 15 | 7 13 14 9 | fmptco | |- ( ph -> ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) = ( k e. A |-> D ) ) |
| 16 | 15 | oveq2d | |- ( ph -> ( H gsum ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) ) = ( H gsum ( k e. A |-> D ) ) ) |
| 17 | eqid | |- ( x e. B |-> C ) = ( x e. B |-> C ) |
|
| 18 | 1 2 3 5 11 8 | gsumcl | |- ( ph -> ( G gsum ( k e. A |-> X ) ) e. B ) |
| 19 | 10 | eleq1d | |- ( x = ( G gsum ( k e. A |-> X ) ) -> ( C e. ( Base ` H ) <-> E e. ( Base ` H ) ) ) |
| 20 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 21 | 1 20 | mhmf | |- ( ( x e. B |-> C ) e. ( G MndHom H ) -> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
| 22 | 6 21 | syl | |- ( ph -> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
| 23 | 17 | fmpt | |- ( A. x e. B C e. ( Base ` H ) <-> ( x e. B |-> C ) : B --> ( Base ` H ) ) |
| 24 | 22 23 | sylibr | |- ( ph -> A. x e. B C e. ( Base ` H ) ) |
| 25 | 19 24 18 | rspcdva | |- ( ph -> E e. ( Base ` H ) ) |
| 26 | 17 10 18 25 | fvmptd3 | |- ( ph -> ( ( x e. B |-> C ) ` ( G gsum ( k e. A |-> X ) ) ) = E ) |
| 27 | 12 16 26 | 3eqtr3d | |- ( ph -> ( H gsum ( k e. A |-> D ) ) = E ) |