This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsmndd.y | |- Y = ( S Xs_ R ) |
|
| prdsmndd.i | |- ( ph -> I e. W ) |
||
| prdsmndd.s | |- ( ph -> S e. V ) |
||
| prdsmndd.r | |- ( ph -> R : I --> Mnd ) |
||
| Assertion | prds0g | |- ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsmndd.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsmndd.i | |- ( ph -> I e. W ) |
|
| 3 | prdsmndd.s | |- ( ph -> S e. V ) |
|
| 4 | prdsmndd.r | |- ( ph -> R : I --> Mnd ) |
|
| 5 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 6 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 7 | 3 | elexd | |- ( ph -> S e. _V ) |
| 8 | 2 | elexd | |- ( ph -> I e. _V ) |
| 9 | eqid | |- ( 0g o. R ) = ( 0g o. R ) |
|
| 10 | 1 5 6 7 8 4 9 | prdsidlem | |- ( ph -> ( ( 0g o. R ) e. ( Base ` Y ) /\ A. b e. ( Base ` Y ) ( ( ( 0g o. R ) ( +g ` Y ) b ) = b /\ ( b ( +g ` Y ) ( 0g o. R ) ) = b ) ) ) |
| 11 | eqid | |- ( 0g ` Y ) = ( 0g ` Y ) |
|
| 12 | 1 2 3 4 | prdsmndd | |- ( ph -> Y e. Mnd ) |
| 13 | 5 6 | mndid | |- ( Y e. Mnd -> E. a e. ( Base ` Y ) A. b e. ( Base ` Y ) ( ( a ( +g ` Y ) b ) = b /\ ( b ( +g ` Y ) a ) = b ) ) |
| 14 | 12 13 | syl | |- ( ph -> E. a e. ( Base ` Y ) A. b e. ( Base ` Y ) ( ( a ( +g ` Y ) b ) = b /\ ( b ( +g ` Y ) a ) = b ) ) |
| 15 | 5 11 6 14 | ismgmid | |- ( ph -> ( ( ( 0g o. R ) e. ( Base ` Y ) /\ A. b e. ( Base ` Y ) ( ( ( 0g o. R ) ( +g ` Y ) b ) = b /\ ( b ( +g ` Y ) ( 0g o. R ) ) = b ) ) <-> ( 0g ` Y ) = ( 0g o. R ) ) ) |
| 16 | 10 15 | mpbid | |- ( ph -> ( 0g ` Y ) = ( 0g o. R ) ) |
| 17 | 16 | eqcomd | |- ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) |