This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | |- S = ( I mPwSer R ) |
|
| psrgrp.i | |- ( ph -> I e. V ) |
||
| psrgrp.r | |- ( ph -> R e. Grp ) |
||
| psr0.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psr0.o | |- O = ( 0g ` R ) |
||
| psr0.z | |- .0. = ( 0g ` S ) |
||
| Assertion | psr0 | |- ( ph -> .0. = ( D X. { O } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | |- S = ( I mPwSer R ) |
|
| 2 | psrgrp.i | |- ( ph -> I e. V ) |
|
| 3 | psrgrp.r | |- ( ph -> R e. Grp ) |
|
| 4 | psr0.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | psr0.o | |- O = ( 0g ` R ) |
|
| 6 | psr0.z | |- .0. = ( 0g ` S ) |
|
| 7 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 8 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 9 | 1 2 3 4 5 7 | psr0cl | |- ( ph -> ( D X. { O } ) e. ( Base ` S ) ) |
| 10 | 1 2 3 4 5 7 8 9 | psr0lid | |- ( ph -> ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) ) |
| 11 | 1 2 3 | psrgrp | |- ( ph -> S e. Grp ) |
| 12 | 7 8 6 | grpid | |- ( ( S e. Grp /\ ( D X. { O } ) e. ( Base ` S ) ) -> ( ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) <-> .0. = ( D X. { O } ) ) ) |
| 13 | 11 9 12 | syl2anc | |- ( ph -> ( ( ( D X. { O } ) ( +g ` S ) ( D X. { O } ) ) = ( D X. { O } ) <-> .0. = ( D X. { O } ) ) ) |
| 14 | 10 13 | mpbid | |- ( ph -> .0. = ( D X. { O } ) ) |