This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrfval.v | |- V = ( I mVar R ) |
|
| mvrfval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| mvrfval.z | |- .0. = ( 0g ` R ) |
||
| mvrfval.o | |- .1. = ( 1r ` R ) |
||
| mvrfval.i | |- ( ph -> I e. W ) |
||
| mvrfval.r | |- ( ph -> R e. Y ) |
||
| Assertion | mvrfval | |- ( ph -> V = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | |- V = ( I mVar R ) |
|
| 2 | mvrfval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 3 | mvrfval.z | |- .0. = ( 0g ` R ) |
|
| 4 | mvrfval.o | |- .1. = ( 1r ` R ) |
|
| 5 | mvrfval.i | |- ( ph -> I e. W ) |
|
| 6 | mvrfval.r | |- ( ph -> R e. Y ) |
|
| 7 | 5 | elexd | |- ( ph -> I e. _V ) |
| 8 | 6 | elexd | |- ( ph -> R e. _V ) |
| 9 | 5 | mptexd | |- ( ph -> ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) e. _V ) |
| 10 | simpl | |- ( ( i = I /\ r = R ) -> i = I ) |
|
| 11 | 10 | oveq2d | |- ( ( i = I /\ r = R ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 12 | 11 | rabeqdv | |- ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 13 | 12 2 | eqtr4di | |- ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) |
| 14 | mpteq1 | |- ( i = I -> ( y e. i |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = x , 1 , 0 ) ) ) |
|
| 15 | 14 | adantr | |- ( ( i = I /\ r = R ) -> ( y e. i |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = x , 1 , 0 ) ) ) |
| 16 | 15 | eqeq2d | |- ( ( i = I /\ r = R ) -> ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) <-> f = ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) |
| 17 | simpr | |- ( ( i = I /\ r = R ) -> r = R ) |
|
| 18 | 17 | fveq2d | |- ( ( i = I /\ r = R ) -> ( 1r ` r ) = ( 1r ` R ) ) |
| 19 | 18 4 | eqtr4di | |- ( ( i = I /\ r = R ) -> ( 1r ` r ) = .1. ) |
| 20 | 17 | fveq2d | |- ( ( i = I /\ r = R ) -> ( 0g ` r ) = ( 0g ` R ) ) |
| 21 | 20 3 | eqtr4di | |- ( ( i = I /\ r = R ) -> ( 0g ` r ) = .0. ) |
| 22 | 16 19 21 | ifbieq12d | |- ( ( i = I /\ r = R ) -> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) = if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) |
| 23 | 13 22 | mpteq12dv | |- ( ( i = I /\ r = R ) -> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) |
| 24 | 10 23 | mpteq12dv | |- ( ( i = I /\ r = R ) -> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) |
| 25 | df-mvr | |- mVar = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) |
|
| 26 | 24 25 | ovmpoga | |- ( ( I e. _V /\ R e. _V /\ ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) e. _V ) -> ( I mVar R ) = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) |
| 27 | 7 8 9 26 | syl3anc | |- ( ph -> ( I mVar R ) = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) |
| 28 | 1 27 | eqtrid | |- ( ph -> V = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) |