This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgneldm.g | |- G = ( SymGrp ` D ) |
|
| psgneldm.n | |- N = ( pmSgn ` D ) |
||
| psgneldm.b | |- B = ( Base ` G ) |
||
| Assertion | psgneldm | |- ( P e. dom N <-> ( P e. B /\ dom ( P \ _I ) e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgneldm.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgneldm.n | |- N = ( pmSgn ` D ) |
|
| 3 | psgneldm.b | |- B = ( Base ` G ) |
|
| 4 | difeq1 | |- ( p = P -> ( p \ _I ) = ( P \ _I ) ) |
|
| 5 | 4 | dmeqd | |- ( p = P -> dom ( p \ _I ) = dom ( P \ _I ) ) |
| 6 | 5 | eleq1d | |- ( p = P -> ( dom ( p \ _I ) e. Fin <-> dom ( P \ _I ) e. Fin ) ) |
| 7 | eqid | |- { p e. B | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } |
|
| 8 | 1 3 7 2 | psgnfn | |- N Fn { p e. B | dom ( p \ _I ) e. Fin } |
| 9 | 8 | fndmi | |- dom N = { p e. B | dom ( p \ _I ) e. Fin } |
| 10 | 6 9 | elrab2 | |- ( P e. dom N <-> ( P e. B /\ dom ( P \ _I ) e. Fin ) ) |