This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfvalfi.g | |- G = ( SymGrp ` D ) |
|
| psgnfvalfi.b | |- B = ( Base ` G ) |
||
| Assertion | sygbasnfpfi | |- ( ( D e. Fin /\ P e. B ) -> dom ( P \ _I ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfvalfi.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnfvalfi.b | |- B = ( Base ` G ) |
|
| 3 | 1 2 | symgbasf | |- ( P e. B -> P : D --> D ) |
| 4 | 3 | ffnd | |- ( P e. B -> P Fn D ) |
| 5 | 4 | adantl | |- ( ( D e. Fin /\ P e. B ) -> P Fn D ) |
| 6 | fndifnfp | |- ( P Fn D -> dom ( P \ _I ) = { x e. D | ( P ` x ) =/= x } ) |
|
| 7 | 5 6 | syl | |- ( ( D e. Fin /\ P e. B ) -> dom ( P \ _I ) = { x e. D | ( P ` x ) =/= x } ) |
| 8 | rabfi | |- ( D e. Fin -> { x e. D | ( P ` x ) =/= x } e. Fin ) |
|
| 9 | 8 | adantr | |- ( ( D e. Fin /\ P e. B ) -> { x e. D | ( P ` x ) =/= x } e. Fin ) |
| 10 | 7 9 | eqeltrd | |- ( ( D e. Fin /\ P e. B ) -> dom ( P \ _I ) e. Fin ) |