This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | residpr | |- ( ( A e. V /\ B e. W ) -> ( _I |` { A , B } ) = { <. A , A >. , <. B , B >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 2 | 1 | reseq2i | |- ( _I |` { A , B } ) = ( _I |` ( { A } u. { B } ) ) |
| 3 | resundi | |- ( _I |` ( { A } u. { B } ) ) = ( ( _I |` { A } ) u. ( _I |` { B } ) ) |
|
| 4 | 2 3 | eqtri | |- ( _I |` { A , B } ) = ( ( _I |` { A } ) u. ( _I |` { B } ) ) |
| 5 | xpsng | |- ( ( A e. V /\ A e. V ) -> ( { A } X. { A } ) = { <. A , A >. } ) |
|
| 6 | 5 | anidms | |- ( A e. V -> ( { A } X. { A } ) = { <. A , A >. } ) |
| 7 | 6 | adantr | |- ( ( A e. V /\ B e. W ) -> ( { A } X. { A } ) = { <. A , A >. } ) |
| 8 | xpsng | |- ( ( B e. W /\ B e. W ) -> ( { B } X. { B } ) = { <. B , B >. } ) |
|
| 9 | 8 | anidms | |- ( B e. W -> ( { B } X. { B } ) = { <. B , B >. } ) |
| 10 | 9 | adantl | |- ( ( A e. V /\ B e. W ) -> ( { B } X. { B } ) = { <. B , B >. } ) |
| 11 | 7 10 | uneq12d | |- ( ( A e. V /\ B e. W ) -> ( ( { A } X. { A } ) u. ( { B } X. { B } ) ) = ( { <. A , A >. } u. { <. B , B >. } ) ) |
| 12 | restidsing | |- ( _I |` { A } ) = ( { A } X. { A } ) |
|
| 13 | restidsing | |- ( _I |` { B } ) = ( { B } X. { B } ) |
|
| 14 | 12 13 | uneq12i | |- ( ( _I |` { A } ) u. ( _I |` { B } ) ) = ( ( { A } X. { A } ) u. ( { B } X. { B } ) ) |
| 15 | df-pr | |- { <. A , A >. , <. B , B >. } = ( { <. A , A >. } u. { <. B , B >. } ) |
|
| 16 | 11 14 15 | 3eqtr4g | |- ( ( A e. V /\ B e. W ) -> ( ( _I |` { A } ) u. ( _I |` { B } ) ) = { <. A , A >. , <. B , B >. } ) |
| 17 | 4 16 | eqtrid | |- ( ( A e. V /\ B e. W ) -> ( _I |` { A , B } ) = { <. A , A >. , <. B , B >. } ) |