This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | |- G = ( SymGrp ` D ) |
|
| psgnval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnval | |- ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnval.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnval.n | |- N = ( pmSgn ` D ) |
|
| 4 | eqeq1 | |- ( t = P -> ( t = ( G gsum w ) <-> P = ( G gsum w ) ) ) |
|
| 5 | 4 | anbi1d | |- ( t = P -> ( ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 6 | 5 | rexbidv | |- ( t = P -> ( E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 7 | 6 | iotabidv | |- ( t = P -> ( iota s E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 8 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 9 | eqid | |- { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
|
| 10 | 1 8 9 3 | psgnfn | |- N Fn { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
| 11 | 10 | fndmi | |- dom N = { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
| 12 | 1 8 11 2 3 | psgnfval | |- N = ( t e. dom N |-> ( iota s E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 13 | iotaex | |- ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) e. _V |
|
| 14 | 7 12 13 | fvmpt | |- ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |