This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi assuming ax-un (see f1omoALT ). (Contributed by Zhi Wang, 19-Sep-2024) (Proof shortened by SN, 24-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1omo.1 | |- ( ph -> F = ( A X. { 1o } ) ) |
|
| Assertion | f1omo | |- ( ph -> E* y y e. ( F ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1omo.1 | |- ( ph -> F = ( A X. { 1o } ) ) |
|
| 2 | 1oex | |- 1o e. _V |
|
| 3 | eqid | |- ( ( A X. { 1o } ) ` X ) = ( ( A X. { 1o } ) ` X ) |
|
| 4 | 2 3 | fvconst0ci | |- ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) |
| 5 | mo0 | |- ( ( ( A X. { 1o } ) ` X ) = (/) -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
|
| 6 | df1o2 | |- 1o = { (/) } |
|
| 7 | 6 | eqeq2i | |- ( ( ( A X. { 1o } ) ` X ) = 1o <-> ( ( A X. { 1o } ) ` X ) = { (/) } ) |
| 8 | mosn | |- ( ( ( A X. { 1o } ) ` X ) = { (/) } -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
|
| 9 | 7 8 | sylbi | |- ( ( ( A X. { 1o } ) ` X ) = 1o -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 10 | 5 9 | jaoi | |- ( ( ( ( A X. { 1o } ) ` X ) = (/) \/ ( ( A X. { 1o } ) ` X ) = 1o ) -> E* y y e. ( ( A X. { 1o } ) ` X ) ) |
| 11 | 4 10 | ax-mp | |- E* y y e. ( ( A X. { 1o } ) ` X ) |
| 12 | 1 | fveq1d | |- ( ph -> ( F ` X ) = ( ( A X. { 1o } ) ` X ) ) |
| 13 | 12 | eleq2d | |- ( ph -> ( y e. ( F ` X ) <-> y e. ( ( A X. { 1o } ) ` X ) ) ) |
| 14 | 13 | mobidv | |- ( ph -> ( E* y y e. ( F ` X ) <-> E* y y e. ( ( A X. { 1o } ) ` X ) ) ) |
| 15 | 11 14 | mpbiri | |- ( ph -> E* y y e. ( F ` X ) ) |