This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcthin.c | |- ( ph -> C = ( SetCat ` U ) ) |
|
| setcthin.u | |- ( ph -> U e. V ) |
||
| setcthin.x | |- ( ph -> A. x e. U E* p p e. x ) |
||
| Assertion | setcthin | |- ( ph -> C e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcthin.c | |- ( ph -> C = ( SetCat ` U ) ) |
|
| 2 | setcthin.u | |- ( ph -> U e. V ) |
|
| 3 | setcthin.x | |- ( ph -> A. x e. U E* p p e. x ) |
|
| 4 | eqid | |- ( SetCat ` U ) = ( SetCat ` U ) |
|
| 5 | 4 2 | setcbas | |- ( ph -> U = ( Base ` ( SetCat ` U ) ) ) |
| 6 | eqidd | |- ( ph -> ( Hom ` ( SetCat ` U ) ) = ( Hom ` ( SetCat ` U ) ) ) |
|
| 7 | elequ2 | |- ( x = z -> ( p e. x <-> p e. z ) ) |
|
| 8 | 7 | mobidv | |- ( x = z -> ( E* p p e. x <-> E* p p e. z ) ) |
| 9 | 3 | adantr | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> A. x e. U E* p p e. x ) |
| 10 | simprr | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> z e. U ) |
|
| 11 | 8 9 10 | rspcdva | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* p p e. z ) |
| 12 | mofmo | |- ( E* p p e. z -> E* f f : y --> z ) |
|
| 13 | 11 12 | syl | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* f f : y --> z ) |
| 14 | 2 | adantr | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> U e. V ) |
| 15 | eqid | |- ( Hom ` ( SetCat ` U ) ) = ( Hom ` ( SetCat ` U ) ) |
|
| 16 | simprl | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> y e. U ) |
|
| 17 | 4 14 15 16 10 | elsetchom | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> ( f e. ( y ( Hom ` ( SetCat ` U ) ) z ) <-> f : y --> z ) ) |
| 18 | 17 | mobidv | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> ( E* f f e. ( y ( Hom ` ( SetCat ` U ) ) z ) <-> E* f f : y --> z ) ) |
| 19 | 13 18 | mpbird | |- ( ( ph /\ ( y e. U /\ z e. U ) ) -> E* f f e. ( y ( Hom ` ( SetCat ` U ) ) z ) ) |
| 20 | 4 | setccat | |- ( U e. V -> ( SetCat ` U ) e. Cat ) |
| 21 | 2 20 | syl | |- ( ph -> ( SetCat ` U ) e. Cat ) |
| 22 | 5 6 19 21 | isthincd | |- ( ph -> ( SetCat ` U ) e. ThinCat ) |
| 23 | 1 22 | eqeltrd | |- ( ph -> C e. ThinCat ) |