This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing A R B . (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvconstr.1 | |- ( ph -> F = ( R X. { Y } ) ) |
|
| fvconstr2.2 | |- ( ph -> X e. ( A F B ) ) |
||
| Assertion | fvconstr2 | |- ( ph -> A R B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconstr.1 | |- ( ph -> F = ( R X. { Y } ) ) |
|
| 2 | fvconstr2.2 | |- ( ph -> X e. ( A F B ) ) |
|
| 3 | 2 | ne0d | |- ( ph -> ( A F B ) =/= (/) ) |
| 4 | 1 | oveqd | |- ( ph -> ( A F B ) = ( A ( R X. { Y } ) B ) ) |
| 5 | df-ov | |- ( A ( R X. { Y } ) B ) = ( ( R X. { Y } ) ` <. A , B >. ) |
|
| 6 | 4 5 | eqtrdi | |- ( ph -> ( A F B ) = ( ( R X. { Y } ) ` <. A , B >. ) ) |
| 7 | 6 | neeq1d | |- ( ph -> ( ( A F B ) =/= (/) <-> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) ) |
| 8 | dmxpss | |- dom ( R X. { Y } ) C_ R |
|
| 9 | ndmfv | |- ( -. <. A , B >. e. dom ( R X. { Y } ) -> ( ( R X. { Y } ) ` <. A , B >. ) = (/) ) |
|
| 10 | 9 | necon1ai | |- ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. dom ( R X. { Y } ) ) |
| 11 | 8 10 | sselid | |- ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. R ) |
| 12 | 7 11 | biimtrdi | |- ( ph -> ( ( A F B ) =/= (/) -> <. A , B >. e. R ) ) |
| 13 | 3 12 | mpd | |- ( ph -> <. A , B >. e. R ) |
| 14 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
| 15 | 13 14 | sylibr | |- ( ph -> A R B ) |