This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing A R B . (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvconstr.1 | |- ( ph -> F = ( R X. { Y } ) ) |
|
| fvconstr.2 | |- ( ph -> Y e. V ) |
||
| fvconstr.3 | |- ( ph -> Y =/= (/) ) |
||
| Assertion | fvconstr | |- ( ph -> ( A R B <-> ( A F B ) = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconstr.1 | |- ( ph -> F = ( R X. { Y } ) ) |
|
| 2 | fvconstr.2 | |- ( ph -> Y e. V ) |
|
| 3 | fvconstr.3 | |- ( ph -> Y =/= (/) ) |
|
| 4 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
| 5 | 1 | oveqd | |- ( ph -> ( A F B ) = ( A ( R X. { Y } ) B ) ) |
| 6 | df-ov | |- ( A ( R X. { Y } ) B ) = ( ( R X. { Y } ) ` <. A , B >. ) |
|
| 7 | 5 6 | eqtrdi | |- ( ph -> ( A F B ) = ( ( R X. { Y } ) ` <. A , B >. ) ) |
| 8 | 7 | adantr | |- ( ( ph /\ <. A , B >. e. R ) -> ( A F B ) = ( ( R X. { Y } ) ` <. A , B >. ) ) |
| 9 | fvconst2g | |- ( ( Y e. V /\ <. A , B >. e. R ) -> ( ( R X. { Y } ) ` <. A , B >. ) = Y ) |
|
| 10 | 2 9 | sylan | |- ( ( ph /\ <. A , B >. e. R ) -> ( ( R X. { Y } ) ` <. A , B >. ) = Y ) |
| 11 | 8 10 | eqtrd | |- ( ( ph /\ <. A , B >. e. R ) -> ( A F B ) = Y ) |
| 12 | simpr | |- ( ( ph /\ ( A F B ) = Y ) -> ( A F B ) = Y ) |
|
| 13 | 3 | adantr | |- ( ( ph /\ ( A F B ) = Y ) -> Y =/= (/) ) |
| 14 | 12 13 | eqnetrd | |- ( ( ph /\ ( A F B ) = Y ) -> ( A F B ) =/= (/) ) |
| 15 | 7 | neeq1d | |- ( ph -> ( ( A F B ) =/= (/) <-> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( A F B ) = Y ) -> ( ( A F B ) =/= (/) <-> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) ) |
| 17 | 14 16 | mpbid | |- ( ( ph /\ ( A F B ) = Y ) -> ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) ) |
| 18 | dmxpss | |- dom ( R X. { Y } ) C_ R |
|
| 19 | ndmfv | |- ( -. <. A , B >. e. dom ( R X. { Y } ) -> ( ( R X. { Y } ) ` <. A , B >. ) = (/) ) |
|
| 20 | 19 | necon1ai | |- ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. dom ( R X. { Y } ) ) |
| 21 | 18 20 | sselid | |- ( ( ( R X. { Y } ) ` <. A , B >. ) =/= (/) -> <. A , B >. e. R ) |
| 22 | 17 21 | syl | |- ( ( ph /\ ( A F B ) = Y ) -> <. A , B >. e. R ) |
| 23 | 11 22 | impbida | |- ( ph -> ( <. A , B >. e. R <-> ( A F B ) = Y ) ) |
| 24 | 4 23 | bitrid | |- ( ph -> ( A R B <-> ( A F B ) = Y ) ) |