This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category is a preordered set. (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| Assertion | prstcprs | |- ( ph -> C e. Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | eqidd | |- ( ph -> ( Base ` K ) = ( Base ` K ) ) |
|
| 4 | 1 2 3 | prstcbas | |- ( ph -> ( Base ` K ) = ( Base ` C ) ) |
| 5 | eqidd | |- ( ph -> ( le ` K ) = ( le ` K ) ) |
|
| 6 | 1 2 5 | prstcleval | |- ( ph -> ( le ` K ) = ( le ` C ) ) |
| 7 | fvex | |- ( ProsetToCat ` K ) e. _V |
|
| 8 | 1 7 | eqeltrdi | |- ( ph -> C e. _V ) |
| 9 | 4 6 8 | isprsd | |- ( ph -> ( C e. Proset <-> A. x e. ( Base ` K ) A. y e. ( Base ` K ) A. z e. ( Base ` K ) ( x ( le ` K ) x /\ ( ( x ( le ` K ) y /\ y ( le ` K ) z ) -> x ( le ` K ) z ) ) ) ) |
| 10 | 3 5 2 | isprsd | |- ( ph -> ( K e. Proset <-> A. x e. ( Base ` K ) A. y e. ( Base ` K ) A. z e. ( Base ` K ) ( x ( le ` K ) x /\ ( ( x ( le ` K ) y /\ y ( le ` K ) z ) -> x ( le ` K ) z ) ) ) ) |
| 11 | 9 10 | bitr4d | |- ( ph -> ( C e. Proset <-> K e. Proset ) ) |
| 12 | 2 11 | mpbird | |- ( ph -> C e. Proset ) |